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abstract | The relationship between blood pressure (BP) and cognitive outcomes in elderly adults has 
implications for global health care. Both hypertension and hypotension affect brain perfusion and worsen 
cognitive outcomes. The presence of hypertension and other vascular risk factors has been associated with 
decreased performance in executive function and attention tests. Cerebrovascular reserve has emerged as a 
potential biomarker for monitoring pressure–perfusion–cognition relationships. A decline in vascular reserve 
capacity can lead to impaired neurovascular coupling and decreased cognitive ability. Endothelial dysfunction, 
microvascular disease, and mascrovascular disease in midlife could also have an important role in the 
manifestations and severity of multiple medical conditions underlying cognitive decline late in life. However, 
questions remain about the role of antihypertensive therapies for long-term prevention of cognitive decline. 
In this Review, we address the underlying pathophysiology and the existing evidence supporting the role of 
vascular factors in late-life cognitive decline.
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Introduction
the relationship between blood pressure (BP) and cogni­
tive outcomes in the elderly has gained attention because 
of its implications for global health care. Hypertension 
affects more than a third of the population worldwide,1 
especially those older than 65 years, of whom 65–75% 
report having hypertension.2 the prevalence of asympto­
matic hypotension in this age group is 16.2%.3 Both high 

and low BP have been linked with cognitive decline and 
dementia. the pathophysiology of the relationship 
between BP and cognition is unclear, but hypo perfusion 
and neurodegeneration have emerged as possible under­
lying mechanisms.4–7 the BP levels that should be tar­
geted to achieve optimal perfusion while preventing 
cognitive decline are still being debated.

in this review, we summarize the evidence indicat­
ing that decline in vascular reserve capacity, which is 
associ ated with impaired neurovascular coupling, is one 
of the main pathways linking BP to cognitive decline. we 
also discuss physiological monitoring and Mri studies 
that improve our understanding of the pathophysiology 
linking abnormalities in brain vascular reserve and cog­
nitive decline, and present supporting clinical evidence 
for the BP–cognition relationship from epidemiological 
studies and clinical trials of antihypertensive therapies.

BP and cognition
Both hypertension and hypotension are associated with 
disruptions in neurovascular coupling, which lead to 
a decrease in vascular reserve capacity and can cause 
microvascular disease, stroke, cognitive decline, and 
dementia. Factors other than perfusion, such as genetic 
pre disposition, autonomic failure, and neuro degeneration 
associated with diabetes mellitus, alzheimer disease, 
Parkinson disease, and Lewy body disease, have also been 
proposed to contribute to the progression of dementia, 
although the mechanisms under lying these associations 
are still unclear.

BP and brain perfusion
neurovascular coupling is a concept that refers to the 
interactions between neurons, vessels and other cells of 
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learning objectives
Upon completion of this activity, participants should be able to: 
1 Identify clinically relevant biomarkers of brain vascular reserve.
2 Distinguish cognitive domains most likely to be affected by 

hypertension and examine research into the effects of blood 
pressure on cognition.

3 Evaluate how antihypertensive therapy may affect cognition.
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the nervous system (such as astrocytes and other glial 
cells), considered as the basis of the relationship between 
neuronal activity, hemodynamic factors, and cell­to­cell 
signaling.8 these interactions synchronize increases in 
neuronal activity with perfusion and thus facilitate com­
munication within the functional networks of the brain. 
neurovascular coupling enables redistribution of cere­
bral blood flow (CBF) to areas of increased activity and 
metabolic demand, as well as allowing adjustments in 
response to beat­to­beat changes in transmural pressure 
and central autonomic nervous system activity. the three 
main components of neurovascular regulation are neuro­
genic, metabolic (mediated by molecules such as O2, CO2, 
atP, and glucose, among others), and myogenic regula­
tion. neurogenic regulation refers to tonic and phasic acti­
vity within the network of the central autonomic nervous 
system, which includes noradrenergic, serotoninergic, 
cholinergic, and dopaminergic neuronal activity, and 
also modulates endothelial function and signaling among 
neuronal networks. these regulatory systems, which con­
verge in associative cortical areas, are widely involved in 
numerous cognitive and motor functions.

Changes in BP are associated with changes in brain per­
fusion and metabolism. the capacity of the neuro vascular 
units within vascular territories and of the whole brain 
to respond to variation in BP and increased metabolic 
demands is referred to as the brain vascular reserve. 
endothelial dysfunction associated with advanced age 
and risk factors such as hypertension and diabetes set 
the stage for altered neurovascular coupling and regional 
decline in vasomotor reserve capacity.9 in this setting, 
increased oxidative stress and inflammation lower the 
intrinsic threshold for cell survival.10

integration of multiple pathways
the combination of advanced age with hypertension 
and other risk factors provides a background for multi­
faceted interactions in pathophysiological pathways that 
lead to cognitive decline and dementia. examples of 
these pathways are those involved in small vessel disease, 
altered regulation of blood flow, presence of white matter 
hyperintensities (wMHs), deposition of amyloid β a4 
protein and neurofibrillary tangles, altered cholinergic 

Key points

Hypertension and hypotension affect neurovascular coupling, leading to a  ■
decrease in perfusion, oxygenation, and vascular reserve capacity, and are 
associated with microvascular disease, stroke, cognitive function decline,  
and dementia

Risk factors for vascular disease accelerate age-related decline in perfusion  ■
and brain tissue volumes and have additive effects in worsening cognitive 
outcomes late in life

Hypertension and other vascular risk factors are linked to poorer performance  ■
in executive function and attention tests than in memory or language scores

Results of antihypertensive treatment in trials for prevention of dementia in  ■
the elderly remain inconclusive, but some studies indicate that single-drug or 
combined antihypertensive therapies have protective effects on cognition

More research is needed to determine which blood pressure values should be  ■
targeted to optimize perfusion and to prevent cognitive decline in the elderly

transmission, and autonomic failure, as well as those 
resulting from genetic predisposition (such the APOEε4 
genotype). these pathways interact in a complex pattern. 
For example, clearance of amyloid β a4 protein from the 
brain is dependent on vascular reactivity, which in turn 
is affected by small vessel disease, whereas the presence 
of comorbidities associated with small vessel disease 
may contribute to the pathology of alzheimer disease. 
interactions between multiple pathophysiological path­
ways result in neuronal death, cortical and subcortical 
white matter disconnection, and functional decline,11 
primarily in the associative areas of frontal and temporal 
cortices, which are involved in complex functions such as 
decision­making and memory.

BP has been increasingly linked not only with the 
pathophysiology of alzheimer dementia and vascular 
dementia (the second most common form of dementia, in 
which several vascular mechanisms, such as those associ­
ated with stroke, lacunar infarcts, small vessel disease, or 
chronic cardiovascular disease, are linked with severe cog­
nitive impairment), but also with mild cognitive impair­
ment (MCi) and mild cognitive disorders (MCDs). MCi 
is as a state of cognitive deterioration in which the affected 
person does not have either normal cognitive function or 
dementia; objective or subjective evidence of cognitive 
deterioration is present, but activities of daily living are 
preserved and complex functions are intact or minimally 
impaired. subcategories of this classification are single or 
multidomain MCi with or without memory involvement 
(amnestic or non amnestic MCi, respectively).12 MCDs 
are a broader spectrum of preclinical cognitive (includ­
ing neurodegenerative) pathologies.13 the relation­
ship between BP and these pathologies emphasizes the 
importance of altered neuro vascular coupling in all of 
these settings.14 nevertheless, the relationship between BP 
and cognition throughout life is still not well understood, 
with some studies showing a strong associ ation between 
cognitive decline and hypertension, others showing an 
associ ation with declining BP, and others showing no 
such associations. the actual relationship between BP 
and cogni tion might be predictable over the course of 
a lifespan if neuro vascular coupling is considered as a 
hidden variable and the duration of exposure of neurons 
and cerebral perfusion to fluctuations in BP is assessed. 
Mounting evidence suggests that the associations between 
endothelial dysfunction, microvascular disease, and 
macro vascular disease could have an important role 
in the manifestations and severity of multiple medical  
conditions that underlie cognitive decline late in life.

Assessment of vascular reserve
two biomarkers of vascular reserve are clinically relevant 
—pressure autoregulation and CO2 vasoreactivity.15 
Conditions affecting BP regulation are associated with 
alterations in these markers, which can be assessed with 
several Mri techniques (table 1).

autoregulation
BP autoregulation maintains a fairly stable perfusion over 
the range of mean systemic pressures 60–150 mmHg. 
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static autoregulation refers to long­term ‘steady­state’ 
control, whereas dynamic autoregulation refers to the 
adaptation of perfusion to beat­to­beat variations in 
intracranial pressure and BP.16 numerous conditions, 
such as hypertension,17 hypotension,18 diabetes,19 vascular 
disease, and stroke,20–22 as well as smoking, impair autoreg­
ulation. with impaired autoregulation, the sigmoid auto­
regulation curve that expresses the relationship between 
CBF and mean BP becomes more linear and perfusion 
becomes pressure­dependent (Figure 1). Hypertension 
and hypotension alter CBF regulation, and the lower 
limits of the autoregulation window are shifted toward 
higher BP values. therefore, the auto regulation range is 
narrowed and the slope of the CBF–BP curve becomes 
steeper. in this setting, vasodilatation in response to low 
BP can be reduced and vaso constriction in response to 
high BP can be increased.

Orthostatic and postprandial hypotension are defined 
as a ≥20 mmHg decline in systolic BP when in an upright 
position, or within 1 h after a meal, respectively.23 in 
hypotension syndromes, altered BP regulation leads to 
supine hypertension. in individuals with hypo tension syn­
dromes, the mean BP can thus vary with postural change, 
from 80 mmHg in the upright position to >180 mmHg 
in the supine position. accordingly, in these individuals 
the autoregulated range can be narrowed to ≈20 mmHg24 
when in the upright position, or expanded over a wide 
range of pressures (mean BP 110–180 mmHg), and the 
lower autoregulation threshold can be shifted toward 
high BP values.18 therefore, in the setting of hypotension 
syndromes, the upright­position BP might be below the 
range of effective regulation, leading to perfusion decline. 
in these patients, daily living activities can induce hypo­
perfusion25 and lead to syncope,26 falls, or ischemia and 
cognitive changes.27

transcranial Doppler ultrasonography (tCD) enables 
noninvasive assessment of dynamic autoregulation 
from spontaneous fluctuations in BP and CBF velo city28 
at baseline and during postural interventions, such as 
standing up or head­up tilt.15,29 CBF fluctuations at 
0.01–0.03 Hz have been linked with intracranial pres­
sure,30 central sympathetic activity,31 microcirculation, 
and cerebral oxygenation.32

autoregulation is quantified using mathematical mod­
eling, Fourier transform analysis, coherence function, 
and more­recently developed nonlinear methods.19,33–35 
a substantial phase lead of CBF velocities with respect 
to the peripheral BP indicates intact autoregulation.28,36,37 
nonlinear approaches, such as multiple coherence15 and 
multimodal pressure­flow (MMPF), enable assessment 
of autoregulation at multiple timescales and have greater 
sensitivity and specificity for detection of autoregulation 
defects than linear methods.19,35 the MMPF method 
demonstrates, for example, that hypertension and dia­
betes substantially impair autoregulation to an observable 
degree after ischemic stroke (Figure 2).35

co2 vasoreactivity
CO2 vasoreactivity is measured from CBF responses to 
vasoconstrictor (such as hypocapnia or hyper ventilation) 
and vasodilatating (such as CO2 rebreathing, breath 

Table 1 | Modalities for assessment of vascular reserve

Method Measured variable advantages limitations

Transcranial Doppler 
utrasonography

Ultrasound frequency shift 
reflecting flow velocity in 
large arteries

Temporal resolution 
(beat-to-beat ~1 s)
Independent of body position

Insonation window, angle, and signal 
quality
Constant artery diameter assumption

Three-dimensional 
continuous arterial spin 
labeling MRI

Arterial H+ spin tagging  
to measure blood flow

Spatial resolution
Noninvasive measurements 
of regional perfusion

Standard template
Signal averaging (~30 s per whole brain)
T1 time prolongation by hematocrit
Magnetic resonance field inhomogeneities

Blood-oxygen-level-
dependent MRI

T2*-weighted imaging  
to detect differences  
in oxygenated and 
deoxygenated hemoglobin

Coupling between regional 
neuronal activity and blood 
flow, with a basis on changes 
of blood oxygenation

Indirect measure of blood flow and activity
Signal averaging (~5 s)
Standard template
Magnetic resonance field inhomogeneities

Single photon emission 
computed tomography

Technetium-99 Spatial resolution Signal averaging (~30 s per projection, 
typically 64 projections)
Invasive
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Figure 1 | Normal cerebral autoregulation curve with its 
lower (50 mmHg) and upper (150 mmHg) limits of mean 
arterial pressure (green line), and a narrowed range with a 
steeper curve (red dashed line).
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holding, or acetazolamide administration) stimuli.38 
vasoreactivity is calculated as the percent flow change 
per CO2 change. tCD­based assessment of vaso reactivity 
is restricted to CBF velocity measurements in one or two 
vascular territories. advances in imaging techniques 
based on three­dimensional continuous arterial spin 
labeling (3D CasL) Mri, blood­oxygen­level­dependent 
(BOLD) Mri, and single photon emission computed 
tomography (sPeCt) imaging, however, enable the 
assessment of vasoreactivity in anatomical regions and 
vascular territories (table 1).39 these techniques have 
advantages over tCD by providing a better assessment 
of the regional distribution of vasoreactivity, but lack 
temporal resolution and values need to be averaged over 
a period of time (a few minutes). aging, hypertension, 
diabetes, or stroke reduce vasodilatation40,41 in multiple 
vascular territories, whereas vasoconstriction can be 
preserved.42 the variability of CBF responses to patho­
genic stimuli underscores the importance of underlying 
small and large vessel disease that can lead to chronic  
hypo perfusion in numerous brain regions.

Assessment of microvascular disease
Cerebromicrovascular disease associated with hyper­
tension and other cardiovascular risk factors, including 
age, is linked with regional hypoperfusion and brain 

volume loss (Figure 3), as well as with neuronal degen­
eration and cognitive decline in elderly people.43–48 
Cerebromicrovascular disease accelerates CBF decline 
with age49–52 and is associated with regional differences in 
vasoregulation and reserve capacity.9

Mri has enabled the visualization of microvascular 
disease (that is, lacunar infarctions, microinfarctions, 
microbleeds, iron deposits, and diffused wMHs) with 
unprecedented resolution (Figure 4). Of note, micro­
infarcts and iron deposits in patients with hyper tension 
can be visible at ultrahigh­field Mri at 8 t, but not at 
lower resolutions (Figure 4).53 wMHs are associated with 
global and regional brain atrophy, including hippo campal 
atrophy;51 reduced functional neuronal mass, which 
indicates that an active neurodegenerative process has 
taken place;54 lower perfusion55 and metabolism56 in the 
white matter, which affect preferentially frontal, parietal, 
and temporal cortices; lower oxygenation in the frontal 
lobes;57 slower CBF velocities;58 cognitive decline and 
executive dysfunction;59 vascular dementia;60–62 motor 
impairment;63 and depression.64 the presence of wMHs 
was also associated with a 24­year increase in diastolic BP 
(>10 mmHg; odds ratio [Or] 2.6, 95% Ci 1.3–5.1), systolic 
BP (>40 mmHg; Or 2.0, 95% Ci 1.2–3.4), pulse pressure 
(>24 mmHg; Or 1.8, 95% Ci 1.1–2.7), and mean arterial 
pressure (>6 mmHg; Or 2.2, 95% Ci 1.4–3.4).65

Figure 2 | Relationship between arterial BP and BFV in the middle cerebral artery. a | Dominant spontaneous oscillations of 
BP and BFV in a 72-year-old healthy control woman. b | Dominant spontaneous oscillations of BP and BFV in a 68-year-old 
man with type 2 diabetes mellitus, in the supine position. BP, BFVL and BFVR were decomposed into different modes, each 
mode corresponding to fluctuations at a different timescale. BP and BFV fluctuations exhibit continuous and dominant 
oscillations at frequencies 0.07–0.4 Hz. Instantaneous phases of BP and BFV oscillations (solid lines, bottom graphs) and 
the mean BP–BFV phase shift (dashed lines) were obtained. c | Phase shift between arterial BP and BFV. Results were 
obtained from 12 healthy controls, 10 patients with hypertension, and 10 patients with history of stroke, by calculating the 
instantaneous phase shift during the Valsalva maneuver. Dynamic autoregulation in controls was characterized by specific 
BP–BFV phase shifts. The reduction of the phase shifts observed in participants with hypertension who had never had a 
stroke and patients with history of stroke indicates impaired autoregulation. Abbreviations: BFV, blood flow velocity; BFVL, 
left BFV; BFVR, right BFVR; BP, blood pressure. Parts a and b modified with permission from Hu et al.19 Part c reprinted with 
permission from Hu et al.35
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BP, cognitive decline, and dementia
epidemiological studies (tables 2–5) support the evidence 
for an age­dependent association between BP and decline 
in cognitive function and/or dementia. specifically, high 
BP (especially high systolic BP) in middle age is consis­
tently associated with late­life cognitive impairment and 
dementia.58 therefore, treatment of high sytolic BP during 
midlife might be an effective strategy to reduce the risk of 
late­life dementia and cognitive impairment.66 By contrast, 
the association between low BP and cognitive dysfunc­
tion is more complicated, and is, therefore, less well under­
stood. Orthostatic hypo tension in middle age can indicate 
autonomic failure (a failure in BP regulation causing fluc­
tuations in BP and perfusion during daily living activities), 
but is a sign of frailty (onset of rapid decline) in old age.

Hypertension and risk of cognitive decline
Hypertension in middle age and cognition
a combination of hypertension and other vascular risk 
factors in the middle­aged population could accelerate 
worsening of cognitive performance late in life (table 2). 
Data from a prospective study of a population 40–69 years 
old with a 12­year follow­up showed that indivi duals with 
either central obesity (the uppermost quartile) or hyper­
tension had poorer performance on executive function­
ing and visual–motor skills tests (trail Making test Part B, 
and visual reproduction immediate and Delayed recall 
tests) than other individuals in the population.67 this 
association was not observed, however, in leaner indivi­
duals with hypertension, and neither hypertension nor 
obesity was individually or synergistically related to verbal 
memory (immediate or delayed recall). in another study, 
obesity was related to increased cerebro ascular resistance, 
slowed CBF velocities, increased systolic BP, and male 
sex.68 Hypertension and diabetes were associated with a 
decline in the ability to perform executive function tasks 
(Delayed word recall test, Digit symbol substitution 
test, and word Fluency test) in the ariC study.69 in the 
nHanes iii study,62 stroke and the APOEε4 genotype 
were independent predictors of verbal memory decline 
assessed by the Delayed word recall test. Metabolic 
syndrome, hypertension, and stroke were independently 
associated with cognitive decline as assessed by the word 
Fluency test. Furthermore, the combination of hyper­
tension and diabetes was associated with decreased 
cognitive ability as assessed by three measures of cogni­
tive function (simple reaction time test, symbol Digit 
substitution test, and serial Digit Learning test).70 these 
findings indicate that a complex composed of several 
aspects of vascular disease (such as stroke, lacunar 
infarcts, and wMHs) is linked to deficits in attention and 
executive function, rather than to a decline in memory (a 
feature clinically linked with alzheimer disease). in the 
reGarDs cross­sectional study,71 the odds of experienc­
ing a stroke symptom increased by 35% with each of the 
following factors: hypertension, diabetes, smoking, lack of 
exercise, and depressive symptoms; the odds of cognitive 
impairment increased by 12% with each modifiable factor, 
in an additive manner.71 a subsequent analysis of the 
reGarDs study showed that an increment of 10 mmHg 

in diastolic BP, but not systolic BP, was associated with an 
increased risk (7%) of cognitive impairment.72 Findings 
of an inverse association between diastolic or systolic BP 
and cognitive performance (assessed by a wide range of 
memory, semantic, and fluency tests) that was indepen­
dent of age, education, employment grade, smoking status, 
alcohol consumption, use of antihypertensive medication, 
diagnosis of diabetes, and cardiovascular disease support 
the existence of a negative relationship between high BP 
and cognition.73

in a study of individuals aged 60–64 years, a large 
proportion (71%) of those diagnosed as having MCi 
reverted to a non­MCi status 4 years later, whereas only 
11% of individuals with any MCD reverted to a non­MCD 
status.13 Participants with a history of smoking or harmful 
levels of alcohol consumption, diagnosed but not medi­
cally treated hypertension, anxiety, or depression, were 
at increased risk of transitioning to MCi or any MCD.13 
these findings support the notion that modifiable risk 
factors may contribute to late­life cognitive decline. Of 
note, decreased CBF in middle­aged individuals has been 
linked with worse cognition later in life among patients 
with hypertension, which indicates that hypoperfusion 
in middle age might mediate late­life cognitive decline in 
these individuals.74

Hypertension and cognition in the elderly
HYvet75 and HYvet­COG76­78 enrolled people older 
than 80 years with uncontrolled hypertension (systolic BP 
160–199 mmHg and diastolic BP <110 mmHg; table 3). 
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Figure 3 | Anatomical and perfusion images from a patient with hypertension and 
diabetes mellitus and an age-matched healthy control. a | Brain volume loss. 
b | Extensive periventricular white matter hyperintensities. c | Reduced perfusion in 
the frontal and temporal regions. d | Normal brain volume. e | Absence of white 
matter hyperintensities. f | Normal perfusion throughout the brain. Abbreviations: 
3D CASL, three-dimensional continuous arterial spin labeling; FLAIR, fluid 
attenuated inversion recovery; MPRAGE, T1-weighted magnetization-prepared rapid 
acquisition with gradient echography.
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the median minimental state examination (MMse) 
score was 26 (maximum 30); the MMse score was higher 
at younger age, with male sex, higher educational level, 
higher creatinine and total­cholesterol levels, and lower 
HDL­cholesterol levels. Being either underweight or obese 
was shown to contribute to decline in MMse scores and 
was also associated with increased incidence of demen­
tia.77 Of note, lower MMse scores have been associated 
with higher systolic and lower diastolic BP during sitting 
and standing in another study.79

in the HYvet study,75 antihypertensive treatment in 
elderly patients did not statistically reduce the incidence 
of dementia. However, this negative finding might have 
been due to a short follow­up, owing to the early termi­
nation of the trial after reductions in mortality and inci­
dence of stroke were demonstrated in association with 
anti hypertensive therapy.

in COGniPres, a cross­sectional study of 1,579 
patients,80 the prevalence of cognitive impairment defined 
by low MMse scores was 12.3%. Low MMse scores were 
associated with age >80 years, uncontrolled BP, and poor 
compliance to antihypertensive treatment, in addition to 
history of anxiety, stroke, or transient ischemic attack, 
and other comorbidities. Overall, BP was controlled 
only in 28.3% of participants, and 33.6% showed poor 
adherence to antihypertensive treatment. in a prospective 
community­ based cohort of individuals aged >65 years 
residing in northern Manhattan, usa, hypertension 
was associated with an increased risk of all­cause MCi 
and non amnestic MCi, but not with amnestic MCi.81 

Hypertension was related to worse executive ability 
scores, but not to worse memory or language scores, 
which confirms the specific link between high BP and 
executive function and attention.

Hypotension and risk of cognitive decline
Orthostatic hypotension affects about 7% of the normo­
tensive elderly population and >30% of those aged 
>75 years who have other conditions such as diabetes, 
cardiac diseases, or Parkinson disease.82 Orthostatic 
hypotension increases the risk of stroke, falls, and cogni­
tive decline,82 regardless of whether the BP drop is systolic 
or diastolic and regardless of baseline BP (table 4).83,84 
in the ariC study,84 the effect of orthostatic hypo­
tension on several cognitive domains was assessed in a 
cohort of 12,702 participants over 12 years of follow­up. 
Participants with orthostatic hypotension were more 
likely to be in the lowest quartile of the Digit symbol 
substitution test and the word Fluency test scores. 
However, this association was not independent of other 
cardio vascular and socioeconomic factors.

with orthostatic hypotension, the maintenance of ade­
quate cerebral perfusion at low BP levels depends on auto­
regulation. Hypoperfusion can develop with impaired 
autoregulation, or when BP is low, or when BP falls 
below the autoregulation range, and can lead to cog nitive 
decline. among patients with BP in the lower­normal 
range or hypotension (systolic BP <120 mmHg, diastolic 
BP <70 mmHg), orthostatic hypotension increases the 
odds of cognitive impairment (measured as >1 MMse 

a c
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Infarct

Iron

Figure 4 | High resolution 8-T gradient gadolinium-enhanced echography slices (in-plane pixel size 195 μm). a–f | Vascular 
supply to the lacunar infarctions and vascular patterns in the infarcted region. Black arrows, infarct sites. Red arrows, 
small vessel ending within low signal intensity foci in the lacunar infarction. Blue arrows, branches of the cerebral artery 
supplying infarcted areas. white arrow, larger area of low signal intensity suggestive of iron deposits that extends beyond 
infarction into the basal ganglia. Iron deposition in brain parenchyma may represent blood–brain-barrier breakdown 
associated with microvascular disease and microinfarcts. g | Clinical T2-weighted image of the infarcted area (indicated by 
black arrows), obtained with 1.5-T MRI. Modified with permission from Novak et al.53
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score decline; Or = 4.1, 95% Ci 1.11–15.1).81 this effect 
might be explained by the fact that, in patients with 
hypotension, perfusion could decline as BP falls below 
the autoregulated range. By contrast, among patients 
with hypertension (systolic BP >140 mmHg, diastolic 
BP >90 mmHg), the presence of orthostatic hypotension 
reduces the odds of cognitive impairment (Or = 0.48, 
95% Ci 0.26–0.90).85 in patients with hypertension, per­
fusion can remain within the autoregulated range, or even 
increase, owing to compensatory vasodilation in response 
to orthostatic hypotension. Of note, patients with ortho­
static hypotension typically have hypertension when in 
the supine position.

in the Malmö Preventive Project (MPP),86 the relation­
ship between orthostatic hypotension and long­term 
morbidity was assessed in 722 men aged 52.6 ± 3.6 years 
over a follow­up period of 19 ± 5.3 years. 5 years after 
enrollment, 9.9% of participants had orthostatic hypo­
tension; in 64.5% of the cases of orthostatic hypo tension, 
a decline in systolic BP, but not in diastolic BP, was 
observed. Orthostatic hypotension was independently 
associated with age, low BMi, hypertension, increased 
heart rate, anti hypertensive treatment, diabetes, and 
current smoking. Men with orthostatic hypotension 
had an increased risk of coronary events, stroke, and 

all­cause mortality, as shown in a multivariate adjusted 
Cox proportional hazard model. Furthermore, partici­
pants with orthostatic hypotension, both at baseline 
and during follow­up, were at the highest risk of any 
adverse event among the study population (Or = 1.76, 
95% Ci 1.28–2.43).86 the Helsinki aging study,87 which 
involved 650 people aged 75–85 years, also found that 
participants with low general BP had low MMse scores 
(<24), whereas hypertension was found to be unrelated 
to cognitive impairment. in this study, baseline assess­
ments showed that participants with dementia had lower 
BP than those without dementia and also had signs of left 
ventricular dysfunction.

BP changes late in life could be the consequence of 
brain degeneration, or might also be its cause. Declining 
BP and orthostatic hypotension late in life are markers 
of general frailty, as they indicate underlying autonomic 
failure associ ated with diabetes, alzheimer disease, 
Parkinson disease with dementia, Lewy body dementia, 
and other disorders. the loss of central autonomic regula­
tion and perfusion regulation in late age, which alter the 
BP–perfusion relationship in the setting of hypo tension, 
might have a broad impact on cognitive networks and, 
ultimately, on morbidity and mortality. the link between 
these factors, however, remains unclear.

Table 2 | Epidemiological studies of hypertension in middle age and cognition

study name n, age 
(years)

study 
period

outcomes BP measures covariates associations with cognitive 
tasks

PATH13 2,082,
60–64

4 years 
follow-up

MCI, MCD Systolic BP 
140.77 ± 24.8
43% receiving 
antihypertensive 
medication

D, RF, DM, 
alcohol

Progression from MCI to MCD 
associated with HTN, harmful 
alcohol consumption, anxiety, and 
depression

Framingham 
Heart Study67

1,814,
40–69

8–12 years 
follow-up

Neuropsychological 
tests

HTN
Antihypertensive 
medication

Obesity HTN and midlife obesity 
associated with worse executive 
function and visual motor skills, 
but not memory

ARIC69 1,130,
~60

14 years 
follow-up

Neuropsychological 
tests

HTN D HTN and DM associated with 
worse executive function (word 
Fluency and Delayed word Recall 
tests); metabolic syndrome, 
stroke, and APOEε4 genotype 
associated with decline in 
Delayed word Recall test scores

NHANES III70 3,385 
enrolled, 
3,270 
analyzed,
30–59

Cross-
sectional

Neuropsychological 
tests
Short-
questionnaire 
survey

HTN
Antihypertensive 
medication

D, SES HTN and DM associated with 
worse cognition (Simple Reaction 
Time, Digit Symbol Substitution, 
and Serial Digit Learning tests)

REGARDS71 14,566,
>45

Cross-
sectional

Six-item screening 
test for cognition 
and stroke

HTN
Antihypertensive 
medication

D, DM HTN, DM, depression, smoking, 
and lack of exercise associated 
with increased risk of cognitive 
impairment

whitehall II73 5,838,
46–68

12 years 
follow-up

Neuropsychological 
tests

HTN D, RF HTN associated with worse 
memory, semantic, and fluency 
tests 

REGARDS72 19,836,
55–74

Cross-
sectional

Six-item screening 
test based on 
MMSE

HTN
Antihypertensive 
medication 

D, RF, 
depression

High diastolic BP, but not high 
systolic BP, associated with 
impaired cognition

Abbreviations: ARIC, Atherosclerosis Risk in Communities; BP, blood pressure; D, demographic variables; DM, diabetes mellitus; HTN, hypertension 
(>140/90 mmHg); MCD, mild cognitive disorder; MCI, mild cognitive impairment; MMSE, minimental state examination; NHANES III, National Health and 
Nutrition Examination Survey III; PATH, Personality and Total Health through Life; REGARDS, REasons for Geographic and Racial Differences in Stroke; RF, risk 
factors (BMI, DM, HTN, cholesterol, smoking); SES, socioeconomic status.
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The influence of BP on dementia
studies evaluating the relationship between BP, vas­
cular dementia, and alzheimer dementia have yielded 
inconsistent results (table 5). whether low BP leads to 
alzheimer disease or whether alzheimer disease triggers 
hypo tension is still debated. Cross­sectional and longi­
tudinal data of a bi­racial population aged 60–96 years 
supported a nonlinear, u­shape relationship between 
low scores on neuropsychological tests and BP values 
<140 mmHg and >180 mmHg.43,88 the prevalence of 
alzheimer disease was higher among people with systolic 
BP <130 mmHg and diastolic BP <70 mmHg than in the 
reference group (systolic BP 130–139 mmHg).43,88

the Honolulu aging study showed that high systolic 
BP (the group with 120–140 mmHg and the group with 
>140 mmHg) in midlife increases the risk of late­life 
dementia.89 Men who developed dementia had an addi­
tional age­adjusted increase in systolic BP of 0.26 mmHg 
(95% Ci 0.01–0.51 mmHg) from midlife to late life and 
a greater decrease in systolic BP in late life. up to 58% of 
those with dementia experienced a systolic BP decrease 
of ≥10 mmHg in late life. the risk ratio [rr] for demen­
tia was lower in patients treated for hypertension than 
in untreated patients (rr = 0.76, 95% Ci 0.65–0.93 and 
rr = 1.05, 95% Ci 0.86–1.27, respectively).66

in the OPtiMa study,90 cognitive function was pro­
spectively evaluated using the Cambridge Cognitive 
examination (CaMCOG) tool in 235 cognitively healthy 
participants, 42 with MCi, 141 with alzheimer disease, 

and 59 with other dementia syndrome. in patients with 
alzheimer disease, the rate of decline of CaMCOG scores 
showed a nonlinear, inverted u­shaped dependence 
on diastolic BP. Both low and high diastolic BP levels 
(<60 mmHg and >110 mmHg) were related to faster cogni­
tive decline over 5 years of follow­up (z = –2.51, P = 0.012). 
CaMCOG scores also showed an inverted u­shaped rela­
tionship between pulse pressure and faster progression of 
alzheimer disease (z = –2.29, P = 0.022). in another study,90 
low diastolic BP (<70 mmHg) was associated with a multi­
adjusted hazard ratio (Hr) of 2.13 (95% Ci 1.05–4.32) for 
incidence of dementia and 2.16 (95% Ci 0.98–4.73) for 
incidence of alzheimer disease in people aged >80 years 
over 9–16 years of follow­up, when compared with normal 
diastolic BP (70–89 mmHg). By contrast, higher dia­
stolic BP (≥90 mmHg) was only marginally related to a 
decreased risk of dementia (Hr 0.58, 95% Ci 0.33–1.02) 
and of alzheimer disease (Hr 0.57, 95% Ci 0.30–1.09). 
systolic pressure was not significantly related to dementia 
risk.90 some studies suggest that BP decline could precede 
the onset of dementia by at least 3 years,4 supporting a link 
between abnormalities in autonomic regulation of BP and 
dementia risk. in addition, other vascular risk factors—
especially high BMi—might interact with BP to increase 
the risk of dementia.91

Antihypertensive therapy and cognition
Clinical trials in which the impact of anti hypertensive 
therapy on cognitive outcomes was assessed have had 

Table 3 | Epidemiological studies of hypertension in the elderly and cognition

study name n, age 
(years)

study 
period

outcomes BP measures covariates associations with cognitive 
tasks

HYVET75 and 
HYVET-COG76–78

3,763,
>80

32 years 
follow up

Dementia, 
Hachinski ischemic 
scale, CT scan

Systolic BP 
160–200 mmHg

D, RF, 
creatinine

Lower MMSE score associated 
with HTN, female sex, lower 
education, and comorbidities

COGNIPRES80 1,579,
>60

Cross-
sectional

MMSE, 12.3% MCI HTN
Antihypertensive 
medication

D Lower MMSE score associated 
with HTN and poor compliance 
with antihypertensive therapy

Northern 
Manhattan81

918,
>75–80

4.7 years 
follow-up

MCI HTN
Antihypertensive 
medication

D, RF, 
stroke

HTN associated with increased 
risk of all-cause MCI and 
nonamnestic MCI, but not 
associated with amnestic MCI

Abbreviations: BP, blood pressure; COGNIPRES, Cognitive function and blood pressure control; D, demographic variables; HTN, hypertension (>140/90 mmHg); 
HYVET, Hypertension in the Very Elderly Trial; HYVET-COG, HYVET cognitive function assessment; MCI, mild cognitive impairment; MMSE, minimental state 
examination; RF, risk factors (BMI, diabetes mellitus, HTN, cholesterol, smoking).

Table 4 | Epidemiological studies of hypotension and cognitive decline

study name n, age 
(years)

Follow-up 
(years)

outcomes BP 
measures

covariates associations with cognitive tasks

ARIC84 12,702,
50–60

12 Neuropsychological 
tests

OH, HTN D, E, RF OH associated with worse cognition 
(Digit Symbol Substitution and word 
Fluency tests)

MPP86 722 men,
50–55

20 Cardiac disease 
stroke, mortality

OH, HTN D, RF OH associated with increased age, low 
body mass, HTN, antihypertensive 
treatment, DM, smoking, coronary 
events, stroke, and all-cause mortality

Helsinki Ageing 
Study87

650,
75–85

10 MMSE OH, HTN D, RF Low BP associated with MMSE <24; 
HTN unrelated to cognition

Abbreviations: ARIC, Atherosclerosis Risk in Communities; BP, blood pressure; D, demographic variables; DM, diabetes mellitus; E, education; HTN, hypertension; 
OH, orthostatic hypotension; MPP, Malmö Preventive Project; MMSE, minimental state examination; RF, risk factors (BMI, DM, HTN, cholesterol, smoking).
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conflicting results (table 6). in the earliest trials, such as 
the sHeP (systolic Hypertension in the elderly Program)92 
and the Medical research Council study,93 no difference 
in cognitive function was observed between participants 
who were treated with antihypertensives and those who 
were untreated. Later, the syst­eur (systolic Hypertension 
in europe) trial showed that hypertension treatment with 
a calcium­channel blocker was associated with a 50% 
reduction in the risk of developing dementia.94,95

More recently, the PrOGress (Perindopril Protection 
against recurrent stroke study)96–97 indicated that treat­
ment of hypertension with angiotensin­converting 
enzyme (aCe) inhibitors in patients with previous 
cerebro vascular disease reduced the risk of dementia and 
reduced progression of microvascular disease. Patients 
who were randomly assigned to receive the aCe inhibi­
tor had a 34% relative risk reduction of the composite 
outcome of dementia with recurrent strokes (95% Ci 
3–55%, P = 0.03). similarly, the HOPe (Heart Outcomes 
Prevention evaluation) trial98,99 found that aCe inhibitors 
were associated with a 41% reduction in cognitive decline 
related to stroke. the sCOPe (study on Cognition and 
Prognosis in the elderly) trial,100,101 which used the MMse 
to assess cognitive outcome, did not, however, demon­
strate a difference between the cognitive function of 
participants randomly assigned to receive an angiotensin­
receptor blocker (arB) and those not given an arB. in 
this study, the group receiving candersartan showed less 
decline in attention than the group not receiving an arB, 
but no differences in working memory were observed.102 
a major concern related to this trial is that many patients 
assigned to the ‘control’ group were already receiving 
antihypertensive therapy, including arBs.

in the very elderly (>75 years old), the effect of anti­
hypertensive therapy is even more inconclusive. in 
HYvet­COG,76,77 treatment with an aCe inhibitor had 

no effect on dementia risk or cognitive decline. However, 
the median follow­up of this study was only 2 years; the 
trial was terminated prematurely, because treatment 
resulted in a 41% decrease in the primary end point of 
fatal or nonfatal stroke. Of 4,695 randomly assigned 
patients, 2,418 participated in the substudy on dementia. 
no other study has been designed to address this issue in 
very elderly individuals.

the combined results of these trials are also not conclu­
sive a pooled analysis of the PrOGress, sCOPe, sHeP, 
and syst­eur trials, whose participants in the treatment 
group total 11,794 and those in the control group total 
11,711, revealed a nonsignificant associ ation between 
antihypertensive treatment and the risk of developing 
dementia (Or 0.89, 95% Ci 0.75–1.04).103 the hetero­
geneity measure in this analysis was high, however, and 
the results were not robust. a meta­analysis of published 
trials, including HYvet,75 demonstrated that, when com­
bined, these studies point to a protective effect of anti­
hypertensive therapy on cognition.75,77 However, more 
recently published trials do not corroborate these find­
ings. For example, in the ProFess trial,104 which used a 
2 × 2 factorial design, arB therapy did not provide cog­
nitive protection after stroke. in addition, results from 
the OntarGet trial105 suggest that systolic BP lower­
ing below the 130–150 mmHg range using ramipril and 
telmi sartan does not improve outcomes.

the inconsistencies in the results of these trials, indivi­
dually or when combined in meta­analyses, are likely to 
be related to differences in the age and, more impor­
tantly, in the baseline cognitive function of the popula­
tions studied. the cognitive domain being measured 
is also likely to be an important cause of the observed 
hetero geneity. Furthermore, many of the trials have used 
MMse, a fairly insensitive and nonspecific measure of 
cognitive change.106 Hypertension, however, is more likely 

Table 5 | Epidemiological studies of BP and dementia

study name n, age 
(years)

study 
period

outcomes BP and other 
outcome 
measures

covariates associations with cognitive tasks

Baltimore43,88 101,
53–84

Cross-
sectional

Neuropsychological 
tests
Memory

BP D, E AD prevalence associated with SBP 
<130 mmHg and DBP <70 mmHg

Honolulu 
Heart 
Program/
Honolulu-Asia 
Aging89

1,890,
45–65 at 
enrollment, 
83 ± 3.8 at 
follow-up

32 years 
follow-up

Dementia, AD, VaD SBP, DBP D, HTN SBP and DBP increased from midlife 
to late life, but decreased again in 
late life; dementia associated with 
SBP rise from midlife to late life, 
and with a greater SBP decrease 
(≥10 mmHg) in late life

OPTIMA90 477,  
>60

5 years 
follow-up

CAMCOG BP D AD progression associated in a 
U-shape curve with DBP 
>110 mmHg and <60 mmHg; SBP 
not related to AD progression

US Veteran 
Affairs 
database111

819 enrolled, 
491 men 
with CVD, 
>65

4 years 
follow-up

Dementia BP control with 
ARBs, lisinopril, 
or other CVD 
drugs

D, CVD, 
DM

ARBs associated with lower 
incidence of AD and any dementia 
compared with lisinopril and other 
CVD drugs

Abreviations: AD, Alzheimer disease; ARB, angiotensin-receptor blocker; BP, blood pressure; CAMCOG, Cambridge cognitive examination questionnaire; CVD, 
cardiovascular disease; D, demographic variables; DBP, diastolic blood pressure; DM, diabetes mellitus; E, education; HTN, hypertension; OPTIMA, Oxford Project 
to Investigate Memory and Aging; MCD, mild cognitive disorder; MCI, mild cognitive impairment; RF, risk factors (BMI, DM, HTN, cholesterol, smoking); SBP, 
systolic blood pressure; VaD, vascular dementia.
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to be related to executive function than to overall cog­
nitive performance.107–109 Pharmacogenetic variation in 
cognitive responses, pharmacokinetic characteristics of 
antihypertensive agents, and study duration are additional 
factors that lead to heterogeneity in studies of hyper­
tension therapy and cognitive function. a meta­ analysis 
of random ized controlled trials of antihypertensive 
therapy in the elderly indicated that BP reduction lowers 
the risk of stroke (35%), cardiovascular events (27%), and 
heart failure (50%), but does not affect mortality.110 By 
contrast, small BP reductions and low intensity of therapy 
were associated with decreased mortality.110

some studies have compared the outcomes achieved 
with different classes of antihypertensive therapy. the 
us veteran affairs study111 determined prospectively 
that arBs are more effective in lowering the risk of 
alzheimer disease and any dementia compared with 
the aCe inhibitor lisinopril or other classes of cardio­
vascular medications. Other trials that assessed the 
impact of arBs on cognitive function demonstrated a 
superior effect of this class of drugs in comparison with 
the β­blocker atenolol,112 and with the combination of 
hydrochlorothiazide and lisinopril.113 antihypertensive 
drugs such as aCe inhibitors (perindopril, captopril), 
arBs (losartan),112,114 and calcium­channel blockers 
(nitrendipine) possibly have class­specific effects, and 
combination therapy might increase cognitive protec­
tion. Pharmacokinetic differences within a drug class 
might also explain this heterogeneity. For example, in the 
Cardiovascular Health study,115 aCe inhibitors that cross 
the blood–brain barrier provide cognitive protection, 
which is not observed with aCe inhibitors that do not 

cross the blood–brain barrier. studies of anti hypertensive 
therapy suggest that antihypertensive treatment might be 
protective against vascular diseases and some of their con­
sequences in the brain. the BP targets that would be pro­
tective against cognitive decline remain to be determined  
in future trials.

Conclusions
substantial evidence exists supporting the link between 
BP and cognition. this relationship might be mediated 
by impairment of vascular reserve and microvascular 
disease. Both hypertension and hypotension contribute 
to cognitive decline, and a combination of vascular risk 
factors during an individual’s lifetime could accelerate 
functional cognitive loss later in life. Combined anti­
hypertensive therapy could have protective effects on 
vascular disease and cognition. effective approaches for 
prevention of cognitive decline, risk reduction, and exten­
sion of survival are needed for treatment of hypertension 
in old age.

Table 6 | Clinical trials investigating effects of antihypertensive therapy on cognitive function

Trial Follow-up 
period

n Mean age 
(years)

% women antihypertensive therapies studied effect of 
treatment on 
outcomes

HYVET-COG77 2.2 years 3,336 84 60 Indapamide or perindopril vs placebo No effect

SHEP92 14 years 455 74 NA Chlortalidone, atenolol, reserpine No effect

MRC93 5.8 years 2,584 69.5 58 Diuretic vs BB vs placebo No effect

Syst-Eur94 2 years 2,418 70 65–66 Nitrendipine with possibility to add 
enalapril and HCTZ vs placebo

Positive

PROGRESS96 4 years 6,105 64 30 ACE inhibitor ± diuretic vs placebo Positive in those 
with stroke

HOPE98 4.5 years 9,297 66 ± 7 27 ACE inhibitor vs placebo Positive

SCOPE100 3.7 years 4,964 76 66 ARB vs placebo No effect

PRoFESS104 2.4 years 20,332 66 36 ARB vs placebo No effect

Fogari et al.112 24 weeks 120 81 55 Losartan vs atenolol Positive

Tedesco et al.114 2 years 69 52 48 Losartan vs HCTZ Positive

Syst-Eur 
follow-up116

4 years 2,902 68 66 Nitrendipine with possibility to add 
enalapril and HCTZ vs placebo

Positive

Muldoon 
et al.117

6 weeks 88 43 0 BB vs diuretic vs ACE inhibitor vs CCB 
vs centrally acting sympatholytic agent 

Positive

Fogari et al.118 16 weeks 144 70 55 ARB vs ACE inhibitor Positive

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; BB, β-blocker; CCB, calcium-channel blocker; HCTZ, hydrochlorothiazide; 
HOPE, Heart Outcomes Prevention Evaluation; HYVET-COG, Hypertension in the Very Elderly Trial cognitive function assessment; MRC, Medical Research 
Council; NA, not available; PROGRESS, Perindopril Protection against Recurrent Stroke Study; PRoFESS, Prevention Regimen for Effectively Avoiding Second 
Strokes; SCOPE, Study on Cognition and Prognosis in the Elderly; SHEP, Systolic Hypertension in the Elderly Program; Syst-Eur, Systolic Hypertension in Europe.

Review criteria

This article is based on a comprehensive search in 
the PubMed database for full-text articles published in 
English between 2005 and 2010. Search terms included 
“hypertension and cognition”, “cognition”, “white matter 
hyperintensities”, “hypotension and cognition”, “blood 
pressure and dementia”, and ”antihypertensive therapy”. 
The reference lists of the articles identified during this 
search were checked for additional articles published 
since January 2005.
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