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Olufsen, Mette S., Johnny T. Ottesen, Hien T. Tran, Laura M.
Ellwein, Lewis A. Lipsitz, and Vera Novak. Blood pressure and blood
flow variation during postural change from sitting to standing: model
development and validation. J Appl Physiol 99: 1523–1537, 2005. First
published April 28, 2005; doi:10.1152/japplphysiol.00177.2005.—Short-
term cardiovascular responses to postural change from sitting to standing
involve complex interactions between the autonomic nervous system,
which regulates blood pressure, and cerebral autoregulation, which
maintains cerebral perfusion. We present a mathematical model that
can predict dynamic changes in beat-to-beat arterial blood pressure
and middle cerebral artery blood flow velocity during postural change
from sitting to standing. Our cardiovascular model utilizes 11 com-
partments to describe blood pressure, blood flow, compliance, and
resistance in the heart and systemic circulation. To include dynamics
due to the pulsatile nature of blood pressure and blood flow, resis-
tances in the large systemic arteries are modeled using nonlinear
functions of pressure. A physiologically based submodel is used to
describe effects of gravity on venous blood pooling during postural
change. Two types of control mechanisms are included: 1) autonomic
regulation mediated by sympathetic and parasympathetic responses,
which affect heart rate, cardiac contractility, resistance, and compli-
ance, and 2) autoregulation mediated by responses to local changes in
myogenic tone, metabolic demand, and CO2 concentration, which
affect cerebrovascular resistance. Finally, we formulate an inverse
least-squares problem to estimate parameters and demonstrate that our
mathematical model is in agreement with physiological data from a
young subject during postural change from sitting to standing.

cardiovascular system; mathematical modeling; cerebral blood flow;
gravitational effect; autonomic regulation; cerebral autoregulation

ORTHOSTATIC INTOLERANCE DISORDERS, which are common in
every age, are difficult to diagnose and treat. Typically, these
disorders, with clinical manifestations including dizziness, syn-
cope, orthostatic hypotension, falls, and cognitive decline, are
a result of several biological mechanisms. To develop better
strategies to treat and diagnose orthostatic intolerance, it is
important to understand the underlying mechanisms leading to
these disorders. One of the main mechanisms involved is the
short-term cardiovascular regulation of blood flow to the brain,
which includes autonomic regulation and cerebral autoregula-
tion. The overall goal of this work is to develop a mathematical
model that can predict dynamics in observed cerebral blood
flow and peripheral blood pressure data and propose mecha-
nisms that can explain the interaction between autonomic
regulation and cerebral autoregulation. To this end, we have

developed a mathematical model that can predict these two
regulatory mechanisms. To validate the model, we compare
model predictions with measurements of arterial finger blood
pressure and middle cerebral artery blood flow velocity of a
young subject.

On the transition from sitting in a chair to standing, blood is
pooled in the lower extremities as a result of gravitational
forces. Venous return is reduced, which leads to a decrease in
cardiac stroke volume, a decline in arterial blood pressure, and
an immediate decrease in blood flow to the brain. The reduc-
tion in arterial blood pressure unloads the baroreceptors located
in the carotid and aortic walls, which leads to parasympathetic
withdrawal and sympathetic activation through baroreflex-
mediated autonomic regulation. Parasympathetic withdrawal
induces fast (within 1–2 cardiac cycles) increases in heart rate,
whereas sympathetic activation yields a slower (within 6–8
cardiac cycles) increase in vascular resistance, vascular tone,
and cardiac contractility and a further increase in heart rate (4,
7, 37). Simultaneously, cerebral autoregulation, mediated by
changes in CO2, myogenic tone, and metabolic demand, leads
to vasodilation of the cerebral arterioles (2, 18, 34, 38).

Our mathematical model includes two submodels: 1) a
cardiovascular model that can predict blood pressure and blood
flow velocity during sitting and 2) a control model that can
predict autonomic and cerebral regulatory mechanisms during
the postural change from sitting to standing. Both submodels
are based on the same closed-loop model with 11 compart-
ments that represent the heart and systemic circulation. Our
previous work (27, 29) also used compartmental models to
describe the dynamics of the cardiovascular system. One (27)
used an open-loop (3-element windkessel) model to analyze
dynamics of cardiovascular control. This model used arterial
blood pressure measured in the finger as an input to predict
model parameters that describe dynamics of cerebral vascular
regulation for young subjects. These parameters were obtained
by minimizing the error between computed and measured
middle cerebral artery blood flow velocity. Consequently, no
equations were used to describe possible mechanisms of the
underlying regulation. To further advance this study, we re-
cently developed a seven-compartment closed-loop model (29)
that can predict the dynamics observed in the data. This model
did not rely on an external input; rather, it included a submodel
that describes the pumping of the left ventricle. In addition, the
seven-compartment model included simple equations that de-
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scribe the short-term regulation. This model was able to accu-
rately predict dynamics of cerebral blood flow velocity and
arterial blood pressure during sitting (t � 60 s) and standing
(t � 80 s), as well as the mean values during the transition from
sitting to standing (60 � t � 80 s), but it was not able to predict
detailed dynamics during the transition from sitting to stand-
ing. Furthermore, we were not able to achieve adequate filling
of the left ventricle. To obtain a more accurate model, we
developed the 11-compartment model, which overcomes lim-
itations of the 7-compartment model by 1) predicting resis-
tances as nonlinear functions of pressure, 2) adding essential
compartments, 3) devising an empirical model of autoregula-
tion, and 4) including a new physiological model describing
pooling of blood in the lower extremities due to effects of
gravity.

A large body of work that describes cardiovascular control
modeling (9–11, 30, 44) is based on predictions of mean values
for arterial blood pressure and cerebral blood flow velocity.
Consequently, these models cannot predict the pulsatile dy-
namics of the cardiovascular system. These models use optimal
control to minimize the deviation between some observed
quantity (e.g., arterial blood pressure) and a given set point.
Although this strategy can provide good parameter estimates,
optimal control models do not describe the underlying physi-
ological mechanisms. Other modeling strategies have been
proposed by Melchior et al. (19, 20) and Heldt et al. (8), who
devised pulsatile models that include pulsatility, autonomic
regulation, and effects of gravity. The latter was done by
changing the reference pressure outside the compartments.
However, these models do not include effects of autoregula-
tion. One way to model the effect of autoregulation is to let the
cerebrovascular resistance be a function of time, as suggested
by Ursino and Lodi (39). However, this work does not include
the effects of autonomic regulation. A second group of models
described parts of the control system without validation against
experimental data (5, 19–21, 31, 32, 35, 40–43). These models
used a closed-loop compartmental description of the cardio-
vascular system combined with physiological descriptions of
the control. Although these models can provide qualitative
analysis of the system, they cannot be used for quantitative
comparisons with data. Furthermore, most of the models in the
second group describe the effects of autonomic regulation
without including the effects of cerebral autoregulation. In
contrast, our model includes autonomic and cerebrovascular
regulations and provides quantitative comparisons with phys-
iological data.

Glossary

A Cross-sectional area
a Aorta

ac Cerebral arteries (in the brain)
acp Peripheral cerebral arteries

af Finger arteries
afp Peripheral finger arteries

al Arteries in the lower body
alp Peripheral arteries in the lower body
au Arteries in the upper body

aup Peripheral arteries in the upper body
av Aortic valve
C Compliance

c Contractility
fact Constant factor (area of vessel)

g Gravitational acceleration
H Heart rate
h Height
k Constant (steepness of sigmoid)
L Inertance
l Length

la Left atrium
lv Left ventricle
M Maximum
m Minimum

mv Mitral valve
p Blood pressure

pin Pressure at inlet
pout Pressure at outlet

pp Peak value of activation
q Volumetric flow rate
R Resistance to flow
r Radius
T Duration of the cardiac cycle
tp Peak value of contraction
V Stressed volume
v Velocity
v Vena cava

vc Cerebral veins
vl Veins in the lower body

Vstroke Stroke volume
vu Veins in the trunk and upper body
� Viscosity
� Steepness
� Density of fluid
� Time constant

MODELING BLOOD PRESSURE AND BLOOD
FLOW VELOCITY

Compartmental model for the cardiovascular system. Our
cardiovascular model is based on an 11-compartment closed-
loop model. The model is designed to predict blood pressure
and volumetric blood flow in the left atrium, left ventricle,
aorta, vena cava, arteries, and veins in the upper body, lower
body, and head, as well as arteries in the finger (Fig. 1). Each
compartment represents all vessels in areas of similar pressure.
Hence, in its simplest form, the systemic circuit could consist
of one arterial (high-pressure) and one venous (low-pressure)
compartment. In our model, we include five arterial compart-
ments and four venous compartments.

The 11 compartments depicted in Fig. 1 are chosen to ensure
that the level of detail in the model is adequate to describe the
complex dynamics observed in the data and, at the same time,
is not too complex to be solved computationally. Four com-
partments that represent the upper body and the legs are
included to model venous pooling of blood and sympathetic
contraction of the vascular bed. Two compartments that rep-
resent the brain are included to model effects of cerebral
autoregulation and to enable model validation against cerebral
arterial blood flow velocity measurements. One compartment
that represents the finger is included to enable model validation
against arterial blood pressure measured in the finger. To
determine cardiac output and venous return, two compartments
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are included to represent the aorta and vena cava. Finally, to
obtain a closed-loop model, it is necessary to include a source
(i.e., the heart) that pumps blood through the system. Conse-
quently, two compartments are included to represent the left
atrium and left ventricle. Our previous work (29) included only
the left ventricle; without an atrium, it is not possible to
achieve adequate filling of the heart.

The major system not included in our model is the pulmo-
nary circulation. Addition of compartments that represent the
pulmonary circulation would require more parameters, which
would increase the computational complexity. Instead, the
pulmonary circulation is represented as a resistance between
the vena cava and the left atrium.

To study dynamics of postural change from sitting to stand-
ing, it is not important to know how blood is distributed among
various inner organs. Hence, the upper body is simply repre-
sented by an arterial and a venous compartment. Each com-
partment is represented by a compliance element (inverse
elasticity) and is separated by resistance to flow. The design of
the systemic circulation with arteries and veins separated by
capillaries provides some resistance and inertia to the volumet-
ric flow rate. In our model, we include effects of resistance
between compartments but neglect effects due to inertia. The
major resistance to flow is located in peripheral regions be-
tween compartments that represent arteries and veins. Com-

partments that represent large conduit vessels are also sepa-
rated by resistances that represent the overall resistance of the
compartment. Resistances between conduit vessels are very
small compared with peripheral resistances.

The description of blood pressure and volumetric flow in a
system consisting of compliant compartments (capacitors) and
resistors is equivalent to that of an electrical circuit (Fig. 1),
where blood pressure plays the role of voltage and volumetric
flow rate plays the role of current. To compare our model with
data, we assume that the diameter of the middle cerebral artery
remains constant, such that blood flow velocity can be obtained
by scaling volumetric blood flow by a constant factor that
represents the area of the vessel. Recent measurements of
middle cerebral artery diameter by magnetic resonance imag-
ing combined with transcranial Doppler assessment of cerebral
blood flow velocity have demonstrated that the middle cerebral
artery diameter does not change, despite large changes in
cerebral blood flow velocity elicited by stimuli such as lower
body negative pressure and CO2 changes (36).

To predict blood pressure and blood flow within and be-
tween the compartments, we base our model on volume con-
servation laws (41). Blood pressure and volumetric blood flow
can be found by computing the volume and change in volume
for each compartment. The equations that represent the arterial
and venous compartments are similar. For each of these com-

Fig. 1. Compartmental model of systemic circulation. The model contains 11 compartments: 5 represent systemic arteries (brain, upper body, lower body, aorta,
and finger), 4 represent systemic veins (brain, upper body, lower body, and vena cava), and 2 represent left atrium and left ventricle. Because the pulmonary
system is not included, systemic veins are directly attached to the left ventricle. Each compartment includes a capacitor to represent compliant volume of arteries
or veins. All compartments are separated by resistors representing resistance of the vessels. Compartment representing the left ventricle has 2 valves (aortic and
mitral). Following terminology from electrical circuit theory, flow between compartments is equivalent to electrical current, and pressure inside each
compartment is analogous to voltage. Resistors (R, mmHg � s �cm�3) are marked with zigzag lines, capacitors (C, cm3/mmHg) with dashed parallel lines inside
the compartments, and aortic and mitral valves with short lines inside the compartment that represents the left ventricle. Cer, cerebral; see Glossary for other
abbreviations.
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partments, the stressed volume V � Cp (cm3, volume pumped
out during 1 cardiac cycle), where C (cm3/mmHg) is compli-
ance and p (mmHg) is blood pressure. The cardiac output (CO)
from the heart is given by CO � HVstroke (cm3/s), where H
(beats/s) is heart rate and Vstroke (cm3/beat) is stroke volume.
For each compartment, the net change of volume is given by

dV

dt
� qin � qout, q �

pin � pout

R
(1)

where q (cm3/s) is determined analogously to Kirchhoff’s
current law and R is the resistance to flow. Several compart-
ments have more than one inflow or outflow. For example, the
compartment that represents the aorta has three outflows
(qout � qaf 	 qau 	 qac), whereas the compartment that
represents the vena cava has three inflows (qin � qafp 	 qvu 	
qvc; Fig. 1).

To model the left ventricle as a pump, the position of the
mitral and aortic valves must be included. During diastole, the
mitral valve is open, while the aortic valve is closed, allowing
blood to enter the left ventricle. Then isometric contraction
begins, increasing the ventricular pressure. Once the ventricu-
lar pressure exceeds the aortic pressure, the aortic valve opens,
propelling the pulse wave through the vascular system. For
healthy young people, both valves cannot be open simulta-
neously. To incorporate the state of the valves, we have
modeled the resistances (Rav and Rmv; Fig. 1) as follows

Rv � min
Rv � e�10
pin�pout�;5,000�

where v represents mitral and aortic valves. This equation
results in a large resistance (and no flow) while the valve is
closed and a small resistance (and normal flow) while the valve
is open. The minimum (min) value is introduced to avoid
numerical problems due to large numbers.

A system of differential equations is obtained by differenti-
ating the volume equation V � Cp and inserting Eq. 1

dV

dt
� C

dp

dt
� p

dC

dt
� qin � qout (2)

The circuit in Fig. 1 gives rise to a total of nine differential
equations in dp/dt, one for each of the arterial and venous
compartments. For the two compartments that represent the
atrium and the ventricle, differential equations are kept as
dV/dt. For these two compartments, blood pressure is com-
puted explicitly as a function of volume (see Ventricular and
atrial contraction; for a complete list of equations, see the
APPENDIX).

Ventricular and atrial contraction. Atrial and ventricular
contraction leads to an increase in blood pressure from the low
values observed in the venous system to the high values
observed in the arterial system. Our model is based on the work
by Ottesen and coworkers (6, 33), which predicts atrial ( pla)
and ventricular (plv) pressure as a function volume and cardiac
activation of the form

p � a�V
t� � b
2 � �c
t�V
t� � d
g
t� p � pla,plv (3)

The parameter a (mmHg/cm3) is related to elastance during
relaxation, b (cm3) represents volume at zero diastolic pres-
sure, c(t) (mmHg/cm3) represents contractility, and d (mmHg)

is related to the volume-dependent and volume-independent
components of developed pressure.

The activation function g(t), which is defined over the length
of one cardiac cycle, is described by a polynomial of degree
(n;m): g(t) � f(t)/f(tp) with

f
 t̃� � �pp

t̃ n
� � t̃�m

nnmm� �

m � n�
m	n ,

0 � t̃ � �

0 � � t̃ � T

(4)

where T (s) is the duration of the cardiac cycle [t̃ � mod(t;T),
s], �(H) (s) denotes the onset of relaxation, H � 1/T (1/s) is
heart rate, n and m characterize the contraction and relaxation
phases, and pp is the peak value of the activation. The ability to
vary heart rate is included in the isovolumic pressure equation
(Eq. 3) by scaling time and peak values of the activation
function f. The time for peak value of the contraction [tp (s)] is
scaled by introducing a sigmoidal function, which depends on
the heart rate (H), of the form

tp � tm �
��

H� � �� 
tM � tm� (5)

where � represents the median, � represents steepness, and tm
(s) and tM (s) denote the minimum and maximum values,
respectively. The peak ventricular pressure [pp (mmHg)] is
scaled similarly using a sigmoidal function of the form

pp � pm �
H�

H� � �� (pM�pm) (6)

where � represents the median, � represents steepness, and pm

(mmHg) and pM (mmHg) denote minimum and maximum
values, respectively. Finally, the time for onset of relaxation is
modeled by

� �
n � m

n
tp
H� (7)

which is obtained by recognizing that tp is related to the
parameter � in the isovolumic pressure model (3). Initial
values for all parameters were obtained from the work by
Ottesen and Danielsen (33), in which parameters were based
on data from dogs. To obtain human values for the young
subject studied in this work, we identified the parameters in
Table 1 during our model validation.

Nonlinear Resistances

To our knowledge, previous modeling contributions (see the
introduction) assume that, during steady state (i.e., sitting, for
t � 60 s), the small resistances between compartments that
represent large conduit vessels are constant. Nevertheless, from
the theory of fluid mechanics, it is well known that the
resistance depends on the radii of the vessels and that the radii
themselves depend on the corresponding transmural pressure.

Our investigation has shown that such dependencies are
important to include in regions that represent vessels with large
diameters and high blood pressure (i.e., large arteries), whereas
they are less important in regions of low blood pressure (i.e.,
the venous system). Furthermore, these “passive” changes in
diameters are also negligible in regions with small vessels (i.e.,
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small arteries and arterioles), where autonomic responses are
active and dominate the change in vessel diameters. Our
previous work (29) did not include nonlinear arterial resis-
tances; therefore, we were not able to obtain a sufficiently wide
pulse pressure immediately after postural change from sitting
to standing.

To model nonlinearities for these resistances, we base our
derivation on Poiseuille’s law. For flow in a cylinder with
circular cross-sectional area, Poiseuille’s law predicts the re-
sistance to flow (14) as

R �
8�l

�r4

where R (mmHg �s �cm�3) is resistance, r (cm) is radius of the
vessel, � (mmHg �s) is viscosity of blood, and l (cm) is length
of the cylindrical vessel. If it is assumed that length of the
vessel is constant

1

R
� r4 � V 2 � p2 (8)

The first relation comes from Poiseuille’s law, the second can
be obtained by assuming a fixed length l, and the third can be
obtained by assuming the validity of the pressure volume
relation V � Cp. In the compartmental model discussed above
each compartment, a number of vessels are lumped together; as
a result, we have no specific information about r. The relation
in Eq. 8 implies that the resistance is inversely proportional to
pressure squared. For real arteries and veins, the resistance will
have maximum and minimum values. Hence, we have chosen
to model this nonlinear relation using a sigmoidally decreasing
function of the form

R � 
RM � Rm�
�2

k

pk � �2
k � Rm (9)

where RM (mmHg �s �cm�3) and Rm (mmHg �s �cm�3) are the
maximum and minimum values for resistance and p (mmHg) is
the blood pressure in the compartment that precedes the resis-
tance. [In our implementation, the actual blood pressure oscil-
lates too much; therefore, for numerical stability, we base the
prediction of R on the corresponding mean arterial blood
pressure, p�(t) (mmHg).] As shown in Fig. 2, the mean arterial
blood pressure oscillates with the same frequency but with
smaller amplitude than pa; k represents the steepness of the

Table 1. Steady-state parameters before and
after optimization

Initial Optimized

Resistance/compliance

Rav 0.030 0.1149
Rau 0.072 0.1853
Ral 0.087 0.0043
Raf 0.183 0.5456
Rac 0.409 0.3177
Raup 1.565 1.8565
Ralp 6.522 7.5854
Rafp 17.5 17.8953
Racp 6.696 7.0838
Rmv 0.007 0.0164
Rv 0.033 0.0368
Rvu 0.001 0.000
Rvl 0.174 0.1193
Rvc 0.957 1.2875
Ca 0.084 0.0732
Cau 0.6160 0.7255
Cal 0.940 0.9881
Caf 0.174 0.2353
Cac 0.159 0.0892
Cv 2.931 2.5181
Cvu 15.276 15.4531
Cvl 6.038 6.2778
Cvc 2.847 2.3007
fact 0.1415 0.2079
� 1.4287 2.3220

Heart

av 0.0003 0.0009
bv 5 4.9122
cv 6.4 6.9100
dv 1 0.8310
nv 2 3.6659
mv 2.2 1.7369
�v 9.9 11.0201
	v 0.951 0.9213
�v 17.5 17.6658

v 1 1.1560
Tm,v 0.186 0.1310
TM,v 0.280 0.2305
Pm,v 0.842 1.1074
PM,v 1.158 1.2385
aa 0.002 0.0002
ba 5 4.1074
ca 6.4 6.4325
da 1 1.1668
na 1.9 1.9501
ma 2.2 1.9767
�a 9.9 10.8595
	a 6.2778 1.9998
�a 17.5 16.5386

a 1 2.1152
Tm,a 0.186 0.2487
TM,a 0.280 0.3560
Pm,a 0.842 1.0065
PM,a 0.990 1.2100

Resistances (mmHg�s�cm�3) are used in Eq. 1, compliances (cm3/mmHg) in
Eq. 2, and heart parameters in Eq. 3. �, Weight for exponent needed to
compute mean arterial pressure; see Glossary for other abbreviations.

Fig. 2. Mean arterial pressure, p�a(t) (pam), for 45 � t � 90 s, computed as a
continuous function by solving differential Eq. 16. Similar results were
obtained for p�au(t).
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sigmoid, and the parameter �2 is calculated to ensure that R
returns to the value of the controlled parameter found during
steady state. For k � 2, the slope of the sigmoid approximates
the relation in Eq. 8. However, the relation in Eq. 8 is valid
only for a steady flow. Blood flow in arteries is unsteady, and
the flow through a given vessel depends on the state of the
vessel. Consequently, as shown in Table 2, we should not
expect that k � 2.

In our model 3, resistances are computed as functions of
pressure: Ral(p�au), Rac(p�a), and Raf(p�a). The resistance of the
aorta (Rau) could also be modeled using this method. Initial
investigations showed that other mechanisms, e.g., autoregu-
lation or autonomic regulation, may also affect Rau. As a
consequence, we have used an empirical model to estimate Rau

(see MODELING AUTONOMIC REGULATION AND CEREBRAL AUTOREG-
ULATION. Cerebral autoregulation).

Gravitational effect. Gravitational effects are essential dur-
ing postural change from sitting to standing. Consider a cylin-
drical vessel with length �z (cm) and time-invariant cross-
sectional area A (cm2), i.e., dA/dt � 0. Assume that there is no
velocity across the vessel and that the blood pressure is only a
function position along the vessel. Hence, dv/dr � 0, where v
(cm/s) and r (cm) denote the velocity and radii, respectively,
and the volumetric flow rate becomes q � Av (cm3/s). Finally,
assume that the drag force due to viscous shear is proportional
to q. Thus the drag force per cross-sectional area unit is
proportional to q; i.e., the drag force can be written as �RAq,
where R (mmHg �s �cm�3) may be interpreted as the resistance.
In steady state, the resistance R is given by Poiseuille’s law
(23)

R �
8���z

A2

To derive the mathematical model, we proceed by balancing
inertial forces with the drag force, the pressure force, and the
gravitational force. The inertial force is given by

M
dv

dt
� �A�z

d

dt
�q

A
����z

dq

dt

where � � 1.055 (g/cm3) is the density of the fluid and M (g)
is the mass of the fluid contained in a piece of the vessel with
length �z (cm) and cross-sectional area A (cm2; Fig. 3). Thus
Newton’s second law, which describes balancing of forces,
gives

��z
dq

dt
� 
 pin � pout�A � Mg cos 
�� � RAq

where g � 981 (cm/s2) is the gravitational acceleration. From
this, it follows that

L
dq

dt
� pin � pout � �g�h�Rq (10)

where L � ��z/A (1/s2) is the inertance and �h � �zcos(�) �
hin � hout (cm) is the vertical difference of the vessel inlet (at
hin where pin and pout represent pressure at the inlet and outlet,
respectively). During steady state, Eq. 10 reduces to

Table 2. Optimized parameters

Initial Optimized

pa 92.8
pau 90.0
�Cv 10.00 18.57
�Ca 10.00 13.67
�R 5.0 23.03
�S 5.0 0.076
hH 50.0 46.73
hk 3.0 3.92
� 0.4 1.26
k (Ral) 5.0 1.48
RM (Ral) 4 � Ral

ss 1.69
Rm (Ral) Ral

ss/4 1.1 � 10�3

k (Rac) 5.0 8.79
RM (Rac) 4 � Rac

ss 2.49
Rm (Rac) Rac

ss / 4 1.3 � 10�2

k (Raf) 5.0 3.83
RM (Raf) 4 � Raf

ss 0.15
Rm (Raf) Raf

ss / 4 2.9 � 10�5

k (Raup) 5.0 5.74
RM (Raup) 4 � Raup

ss 14.58
Rm (Raup) Raup

ss / 4 0.13
k (Ralp) 5.0 10.57
RM (Ralp) 4 � Rafp

ss 145.19
Rm (Ralp) Rafp

ss / 4 0.41
k (Rafp) 2.0 3.69
RM (Rafp) 4 � Rafp

ss 64.81
Rm (Rafp) Rafp

ss / 4 0.16
k (cv) 2.0 4.62
RM (cv) 4 � cvtr

ss 17.27
Rm (cv) cvtr

ss / 4 1.04
k (ca) 2.0 4.58
RM (ca) 4 � cvtr

ss 11.99
Rm (ca) cvtr

ss / 4 0.94
k (Ca) 2.0 0.38
CM (Ca) 4 � Ca

ss 4.3 � 10�2

Cm (Ca) Ca
ss / 4 4.8 � 10�4

k (Cau) 2.0 17.22
CM (Cau) 4 � Cau

ss 1.01
Cm (Cau) Cau

ss / 4 0.42
k (Cal) 2.0 13.90
CM (Cal) 4 � Cal

ss 15.25
Cm (cal) Cal

ss / 4 0.82
k (Cac) 2.0 4.05
CM (Cac) 4 � Cac

ss 0.23
Cm (Cac) Cac

ss / 4 7.0 � 10�2

k (Caf) 2.0 81.34
CM (Caf) 4 � Caf

ss 0.46
Cm (Caf) Caf

ss / 4 1.7 � 10�2

k (Cv) 3.0 0.47
CM (Cv) 5 � Cv

ss 15.32
Cm (Cv) Cv

ss 0.52
k (Cvu) 3.0 12.90
CM (Cvu) 5 � Cvu

ss 55.86
Cm (Cvu) Cvu

ss / 5 1.93
k (Cvl) 3.0 47.93
CM (Cvl) 5 � Cvl

ss 277.94
Cm (Cvl) Cvl

ss / 5 0.17
k (Ccv) 3.0 15.71
CM (Ccv) 5 � Cvc

ss 13.89
Cm (Cvc) Cvc

ss / 5 0.19

Constants p�a and p�au denote pressure set points used in control equations.
Time constants (�i) denote time delay involved with controlled variables.
Parameters for gravity denote maximum height needed to obtain observed
pressure drop, and a small delay (�) from which the subjects stands up.
Optimized values for resistances and capacitors include ki, which represent the
steepness of the sigmoid, and a maximum (RM or CM) and a minimum (Rm or
Cm) value. Optimized values for Rau and Rac are shown in Figs. 4 and 5. ss,
Steady state; see Glossary for other abbreviations.
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q �

pin � �ghin � � 
 pout � �ghout�

R
(11)

When modeling postural change from sitting to standing, we
substitute Eq. 11 for Kirchhoff’s current law. In the limit g3
0, Eq. 11 approaches the normal form of Kirchhoff’s current
law given in Eq. 1. In the case of energy conservation (R3 0),
Bernoulli’s law for steady flow is recovered; as a result, pin 	
�ghin � pout 	 �ghout. Thus Kirchhoff’s current law is still
valid if we interpret p as the hydrostatic pressure p 	 �gh.

To capture the transition from sitting to standing, h is
defined for the lower body compartments as the exponentially
increasing function

h
t� �
hM

1 � e�k
t�Tup��� (12)

where Tup (s) is the time at which the subject stands up, hM

(cm) is the maximum height needed for the mean arterial blood
pressure in the finger to drop as indicated by the data, and � (s)
is the latency for the transition to standing. In our experiments,
the subjects sit with their legs elevated and the hand, where the
pressure is measured, held by a sling at the level of the heart.
Therefore, compartments that represent the heart and the finger
are not affected by gravity. Compartments that represent the
brain and the upper body are exposed to constant hydrostatic
conditions, which are neglected in the current formulation.
However, compartments that represent the legs are affected by
gravity. Consequently, equations for the flows qal and qvl will
be modified as described in Eq. 11

qal �
pau � 
pal � �gh�

Ral

qvl �

pvl � �gh� � pvu

Rvl

In the first of these equations, hin � 0 and hout � h, where h is
computed using Eq. 12. In the second of these equations, hin �
h and hout � 0.

MODELING AUTONOMIC REGULATION AND
CEREBRAL AUTOREGULATION

Two main control mechanisms play a role: autonomic reg-
ulation and cerebral autoregulation. Autonomic regulation is
mediated via the autonomic nervous system and causes
changes of resistances in the vascular bed, compliance, heart
rate, and cardiac contractility. Autoregulation is a local control
that maintains cerebral perfusion, despite changes in systemic
pressure. Autoregulation is mediated via changes in myogenic
tone, metabolic demands, and CO2 concentration.

Autonomic regulation. Autonomic regulation is modeled as
a pressure regulation where heart rate (H, beats/s), cardiac
contractility (ca and cv, mmHg/cm3), peripheral systemic re-
sistance (Raup and Ralp, mmHg �s �cm�3), and systemic compli-
ance (Ca, Cau, Cal, Cac, Caf, Cv, Cvu, Cvl, and Cvc, cm3/mmHg)
are functions of mean arterial blood pressure (p�a, mmHg).

The change in the controlled parameters is modeled using a
first-order differential equation with a set-point function de-
pendent on p�a

dx
t�

dt
�

�x
t� � xctr
p�a�

�
(13)

This simple model is able to predict the observed dynamics.
The parameter x(t) is controlled, xctr (pa) is the set-point func-
tion, and � (s) is a time constant that characterizes the time
required for the controlled variable to obtain its full effect.
Different values of � were used for control of cardiac contrac-
tility, compliance, and resistance (Table 2). As described
earlier, autonomic regulation yields increases in peripheral
vascular resistance, heart rate, and cardiac contractility. Heart
rate is directly obtained from data. Hence, it is not modeled
using the set-point function (13). To obtain increases in pe-
ripheral resistances (Raup, Ralp, and Rafp) and cardiac contrac-
tility (cla and clv) in response to the decrease in arterial blood
pressure, the following set-point function has been used

xctr
p�a� � 
xM � xm�
�2

k

p�a
k � �2

k � xm (14)

A sigmoidal function was used, because it displays saturation;
i.e., the function has a maximum and a minimum value corre-
sponding to maximum dilation and maximum constriction of
the vessels. In addition, vascular tone is increased, leading to a
decrease in compliance in response to a decrease in arterial
blood pressure. Hence, for compliance, the set-point function
has the form

xctr
p�a� � 
xM � xm�
p�a

k

p�a
k � �2

k � xm (15)

Equation 14 gives rise to a decreasing sigmoidal curve (i.e., for
a decreasing pressure, the value of xctr will increase), whereas
Eq. 15 gives rise to an increasing sigmoidal curve (i.e., for a
decreasing pressure, the value of xctr will decrease). The
parameters xm and xM are minimum and maximum values for
the controlled parameter x(t). The parameter �2 is calculated to
ensure that x(t) returns the value of the controlled parameters
found during steady state. Initial values of parameters for k, xm,
and xM are from Danielsen (5) (Table 2).

Fig. 3. Vessel segment with cross-sectional area A (cm2) and length �z (cm).
At one end, pressure is pin (mmHg); at the other end, pressure is pout (mmHg).
Vessel is at an angle � with respect to gravity g (g/cm2) and at an angle � with
respect to the horizontal axis. Difference in vertical latitude is �h � �zcos(�)
(cm).
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These control equations (Eqs. 13–15) are formulated as
functions of mean arterial blood pressure. However, our model
describes the instantaneous (pulsatile) pressure. Mean values
are computed as weighted averages, where the present is
weighted higher than the past

p� a �
1

N�
0

t

pa
s�e
��(t�s)ds (16)

The normalization factor N is introduced to ensure that the
correct mean arterial blood pressure is obtained for pa � 1, i.e.,

N � �
0

t

e��(t�s)ds �
1 � e��t

�
(17)

Because our mathematical model is described by differential
equations, it is more efficient to implement a differential
equation to compute the mean arterial blood pressure. Hence,
we differentiate Eq. 16 to obtain

dp� a

dt
�

� p�a � pa
t�

�
(18)

A similar equation is used to calculate pau.
Cerebral autoregulation. On the transition to standing, ce-

rebral autoregulation mediates a decline in cerebrovascular
resistance (Racp) in response to the decrease in arterial blood
pressure. In addition, the autonomic system may also play a
role, by decreasing the cerebrovascular resistance due to cho-
linergic vasodilation or by increasing the resistance due to
release of norepinephrine (7). Consequently, it is not trivial to
develop an accurate physiological model that describes cere-
bral autoregulation. Our strategy in this work has been to use
a piecewise linear function with unknown coefficients to obtain
a representative function that describes the time-varying re-
sponse of the cerebrovascular resistance. Once such a function
is obtained, we can interpret the result in terms of the under-
lying physiology. To obtain such a function, we have param-
eterized the cerebrovascular resistance using piecewise linear
functions of the form

Racp
t� � �
i�1

n

�iHi
t� (19)

where Hi represents the standard “hat” functions given by

Hi
t� � �
t � ti�1

ti � ti�1

, ti�1 � t � ti

ti	1 � t

ti	1 � ti

, ti � t � ti	1

0, otherwise

(20)

The unknown coefficients �i will be estimated together with
the other control parameters in Table 2. As described above,
we have used a similar method to estimate the resistance Rau,
which may be affected by passive nonlinear resistances and
autonomic regulation.

PARAMETER ESTIMATION

Estimation of model parameters has been done in a number
of steps. First, we used physiological properties of the system

to determine initial values for all parameters and variables
(Table 1). Then we solved the steady-state problem (without
including effects of gravity and regulation); i.e., we solved 11
equations of the form of Eq. 2, one for each compartment.
During steady state, all resistances and capacitors were kept
constant; hence, terms that involve p(dC)/dt � 0. These equa-
tions are combined with Eqs. 3–7, which determine pressures
in the left atrium and ventricle, and Eq. 18, which determines
the mean arterial pressures p�a and p�au. Finally, we estimated a
constant factor used to calculate cerebral blood flow velocity
vacp � qacp/fact (cm/s). We have used a constant factor (fact),
because we assume that the cross-sectional area of the middle
cerebral artery does not change significantly (36). These equa-
tions involve a total of 53 parameters that were estimated using
a nonlinear optimization method, the Nelder-Mead algorithm,
which is based on function information computed on sequences
of simplexes (13). Estimated parameter values are shown
together with initial values in Table 1. To obtain the best
possible parameter values, we used the following cost function
to minimize the difference between measured and computed
values of cerebral blood flow velocity and finger pressure

J �
1

Nv� d �
i�1

N


vi
d � vi

c�2 �
1

Np�d �
i�1

N


pi
d � pi

c�2

�
1

Mv�d,dia �
i�1

M


v i
d,dia � vi

c,dia�2 �
1

Mv�d,sys �
i�1

M


v i
d,sys � v i

c,sys�2

�
1

Mp�d,dia �
i�1

M


pi
d,dia � pi

c,dia�2 �
1

Mp�d,sys �
i�1

M


pi
d,sys � pi

c,sys�2

where v � vacp and p � paf . The superscripts d and c refer to
data and corresponding computed values, respectively. In the
first two sums, i � [1:N], where N is the number of data points.
To compare the computed values xc and the measured data
values xd (x � v,p), interpolation is used to evaluate the
computed value at the same points in time where the data are
obtained. Each term is divided by the number of points and the
mean value of the measured data. Our model is not able to
predict second-order oscillations (see Fig. 7B). The error due to
poor resolution of second-order oscillations is of the same
order of magnitude as the error due to poor resolution of the
maximum and minimum values. However, for our modeling
purpose, it is important to resolve the maximum and minimum
values, but it is not important to resolve second-order oscilla-
tions. To reward good resolution of the maximum and mini-
mum values, we have added four additional sums predicting
the error between systolic and diastolic (sys and dia, respec-
tively) computed and measured values of vacp and paf . Because
of the nature of the pulse wave, only one minimum and
maximum value is obtained per period; hence, i � [1:M],
where M is the number of periods for 45 � t � 90 s.

After the steady-state parameters (constant values of all
resistances and compliances) were obtained, we included all
equations that describe the control and ran another optimiza-
tion to fit parameters that describe the control functions. This
second optimization included 27 ordinary differential equa-
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tions: 11 of the form of Eq. 2, 2 of the form of Eq. 18, and 14
of the form of Eq. 13. These equations are solved together with
the heart model described in Eqs. 3–7, equations for passive
nonlinear resistances (Eq. 9), Eq. 12, which determines the
height used to calculate gravitational pooling in the veins, and
the piecewise linear functions used to parameterize Racp and
Rau. This second optimization gave rise to a total of 111
parameters that were optimized: 59 parameters are shown in
Table 2, and 52 parameters used to parameterize Racp and Rau

are shown in Figs. 4 and 5. During this second optimization, all
parameters found during steady-state (i.e., during sitting, for
t � 60 s) optimization remained constant (at the optimized
values). In general, the inverse problem for parameter estima-
tion does not provide a unique solution. In addition, the
optimized parameters depend on the initial guesses and on the
optimization algorithm.

The differential equations from our mathematical model,
Eqs. 2, 13, and 18, are solved using MATLAB’s (MathWorks,
Natick, MA) differential equations solver “ode15s.” Initial
values for the resistance and compliance parameters were
found from the distribution of the total blood volume between
compartments and steady-state estimates for the pressure val-
ues in the various compartments. The blood volume distribu-
tion is obtained using the quantities suggested by Beneken and
DeWit (3). Initial values for the resistances and compliances
were based on previously reported values for blood volumes
and flow rates (3), whereas blood pressure values were ob-
tained from standard physiology literature (4). Volumes for
each compartment are given by

V � Cp � Vunstr

where Vunstr is the unstressed volume, i.e., the part of the
volume that is not pumped out during the cardiac cycle.
Therefore, initial values for compliance and resistance are
calculated by

C �
V � Vunstr

p

R �
pin � pout

R

These initial values are given in Table 1. Initial values for
pressures and unstressed volumes are given in Table 3.

EXPERIMENTAL DATA

Our model was validated against continuous physiological
data from a young subject during the transition from sitting to
standing. In particular, we used arterial blood pressure mea-

Fig. 4. Cerebral vascular resistance [Racp(t)] for 45 � t � 90 s, computed
using piecewise linear Eq. 19. �, 26 values used to estimate cerebrovascular
resistance. Shortly after transition to standing (at t � 60 s), cerebral autoreg-
ulation leads to a decrease in cerebrovascular resistance followed by an
increase to a new steady-state value slightly higher than the steady-state value
during sitting (for t � 60 s).

Fig. 5. “Passive” resistances between compartments that represent large ar-
teries. A: Rau(t) fitted, using Eq. 19, with 26 values (�). B: Rac(t) computed
using Eq. 9. Rau and Rac are depicted for 45 � t � 90 s. Rau and Rac increase
in response to decreasing pressure and then decrease to a new steady-state
value. Models for Ral (t) and Raf (t) are similar to that for Rac(t) and show
similar trends.
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surements from the finger and arterial blood flow velocity
measurements from the middle cerebral artery (15). Each
subject was instrumented with a three-lead ECG (Collins) to
obtain heart rate and a photoplethysmographic cuff on the
middle finger of the right hand supported at the level of the
right atrium to obtain noninvasive beat-by-beat blood pressure
(Finapres, Ohmeda). The middle cerebral artery was insonated
by placement of a 2-MHz Doppler probe (Nicolet Companion)
over the temporal window to obtain continuous measurements
of blood flow velocity. The envelope of the velocity waveform
was derived from the fast Fourier transform of the Doppler
signal, as described by Aaslid et al. (1). All physiological
signals were digitized at 500 Hz (Windaq, Dataq Instruments)
and stored for offline analysis. Blood pressure reduction of
�30 mmHg on the transition to standing was used as a
challenge for cerebral autoregulation. Subjects sat in a straight-
backed chair with their legs elevated at 90° in front of them.
They were then asked to stand. Standing was defined as the
moment both feet touched the floor. Subjects performed two
5-min trials in the sitting position followed by standing for 1
min and one 5-min trial in the sitting position followed by 6
min of standing.

RESULTS

We were able to obtain excellent agreement between simu-
lations and measured data. Figure 6 shows the characteristic
features of the measured data. After the transition to standing
at t � 60 s, blood pressure (systolic, diastolic, and mean
values) dropped significantly. At the same time, mean blood
flow velocity decreased during the transition from sitting to
standing (dark line through pulsatile velocity data). However,
although systolic and diastolic values of pressure decreased,
only the diastolic value of the blood flow velocity was dimin-
ished. The systolic values remained at baseline or were even
slightly increased. This yields a significant widening of the
pulsatile flow, a feature typical for young people with normal
regulatory responses (15).

First, we evaluated our model’s ability to reproduce the
dynamics during steady state (i.e., during sitting, for t � 60 s).
We applied initial parameter values from physiological con-
siderations (see above). Then we fitted our model [without
including equations that describe resistances of large arteries as
nonlinear functions of pressure (Eq. 9) and those that describe
active control (Eqs. 13 and 19)] to the data set. The duration of
the cardiac cycles was obtained from the ECG (Fig. 6). Sim-
ulation results in Fig. 7 show that we obtained an excellent
agreement between our model and the data during steady state.
However, our model is not able to resolve details of the
secondary oscillations observed within each cardiac cycle (Fig.
7B), a feature that is not included in our heart model.

The second step in validating our model is to illustrate that
we can model effects of venous pooling after the transition to
standing. Venous pooling results in dramatic reductions of
cerebral blood flow velocity and arterial pressure (Fig. 8): with
the parameters listed in Tables 1 and 2, it is possible to
decrease blood flow velocity and pressure. Two observations

Fig. 6. Measured arterial blood pressure in the middle finger [paf (t)], cerebral
blood flow velocity [vacp(t)], and heart rate [H(t)] for a young subject for 45 �
t � 90 s. Gray traces, time-varying values; dark traces, corresponding beat-
to-beat mean values. Heart rate is obtained as follows: H � 1/T, where T (s)
is cardiac cycle duration. Immediately after transition to standing (at t � 60 s),
pulsatile and mean blood pressure dropped significantly, mean blood flow
velocity dropped, and pulsatile blood flow velocity widened (i.e., systolic value
increased, and diastolic value decreased). Initially, heart rate increased and
then reached a new steady state at a higher level than during sitting.

Table 3. Initial values for pressures and total and
unstressed volumes

Parameter Value

Pressure, mmHg

pa 70.0
pau 72.0
pal 73.0
paf 70.0
pac 70.0
pv 2.0
pvu 2.1
pvl 2.2
pvc 43.0

Total volume, cm3

Vlv 68.0
Vla 172.0
Va 40.0
Vau 300.0
Val 233.7
Vaf 80.0
Vac 70.0
Vv 183.2
Vvu 1909.5
Vvl 724.6
Vvc 391.4

Unstressed volume, cm3

Va
unstr 32.0

Vau
unstr 240.0

Val
unstr 151.9

Vaf
unstr 64.0

Vac
unstr 56.0

Vv
unstr 168.5

Vvu
unstr 1756.7

Vvl
unstr 652.1

Vvc
unstr 360.1

Estimates of initial pressures are based on standard physiology literature
texts (4, 7), Estimates of initial volumes are based on the work of Beneken and
Dewit (3). unstr, Unstressed; see Glossary for other abbreviations.
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should be noted: 1) although we did not include effects of the
control, we still see an increase in heart rate, because heart rate
information is obtained from the data (Fig. 6), and 2) although
blood flow velocity and pressure drop immediately after stand-
ing (at 60 s), the pulse amplitude for blood flow velocity and
pressure remains very narrow.

Next, we demonstrated the impact of the nonlinear relation
between pressure and the vascular resistance of the large
arteries (see MODELING BLOOD PRESSURE AND BLOOD FLOW VELOC-
ITY. Nonlinear resistance); i.e., we let Ral (pau), Rau(pa),
Rac(pa), and Raf (pa) be functions of pressure. We used the
same values for all remaining parameters, and the result of this
simulation is shown in Fig. 8B. The pulse pressure amplitude

is higher immediately after the transition to standing (from
60 � t � 65 s); thus the model better represents measured
values (cf. dark lines in Fig. 8, A and B, in the transition region,
for 60 � t � 65 s).

The third step involved incorporation of all active control
mechanisms. Results that include effects of autonomic regulation
and autoregulation are shown in Fig. 9. Our model is able to
predict the change in the overall profile during the transition from
sitting to standing. The only minor difference is that the data
include a slight overshoot in pressure in the transition to standing.

Autonomic regulation was included using a model that
predicts parameters as a function of pressure. Although this

Fig. 8. Cerebral blood flow velocity and arterial finger blood pressure for 45 �
t � 90 s. Effect of standing is shown without active control mechanisms. A:
blood flow velocity and blood pressure (dark traces) decrease as a result of
redistribution of volumes from changes in hydrostatic pressure. Results were
obtained by solving equations of the form of Eq. 2, where gravity is included,
as shown in Eq. 11. B: effect of including nonlinear functions of pressure for
large arterial resistances as described in Eq. 9. Immediately after standing
(from 60 � t � 65 s), pulse pressure is much wider. Dark traces, simulated
model results; gray traces, data.

Fig. 7. A: middle cerebral blood flow velocity and arterial finger blood
pressure during sitting, i.e., for 0 � t � 60 s. B: magnification of 29.4 � t �
34.2 s in A. During steady state, vacp(t) and paf (t) were obtained by solving
differential equations of the form of Eq. 2 (see APPENDIX for all equations).
Dark traces, result of our computations; gray traces, corresponding data. Our
model can accurately predict blood flow velocity and blood pressure profiles
while the subject is sitting. As shown in B, our model is not able to capture
secondary oscillations observed in the data.
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method does not incorporate effects of sympathetic vs. para-
sympathetic activation, it does include net effects of neuro-
genic regulation. Effects of cerebral autoregulation were mod-
eled using the empirical model described in Eq. 19. We chose
to include 26 points to represent the dynamics of cerebral
vascular resistance, Racp (Fig. 4). Figure 4 shows that Racp

decreases because of autoregulation in response to the decrease
in pressure. From earlier work (27), we expected an initial
increase before the decrease; however, the model used in our
previous work was much simpler than the model used in the
present work. In particular, the parameter that represents pe-
ripheral resistance (Rp) in our earlier work lumps the peripheral
resistance from the entire body, i.e., it combines Racp, Raup,
Rafp, and Ralp. Consequently, it can be difficult to use Rp to
describe the dynamics of the cerebrovascular resistance Racp,
as we attempted to do in our earlier work.

The resistance of the upper body (Rau) was also modeled
using a piecewise linear model with unknown parameters, as
described elsewhere (19). We expected that Rau may depend on
autonomic regulation and may be a nonlinear passive function
of pressure. This resistance follows trends predicted by remain-
ing resistances that represent the large arteries (Fig. 5).

Finally, Fig. 10 depicts the dynamics of some of the con-
trolled variables, e.g., arterial resistance (Raup), cardiac con-

Fig. 9. Autonomic regulation and cerebral autoregulation of arterial finger
blood pressure and cerebral blood flow velocity for 45 � t � 60 s. Model is
able to reproduce data well. Dark traces, model simulations; gray traces, data.
Results were obtained by solving cardiovascular equations of the form of Eq.
2, including gravity, as described in Eq. 11, passive resistances (Eq. 9), and
autonomic regulation and cerebral autoregulation (Eqs. 13 and 19). The main
region, where the model does not capture the dynamics of the data, is just
before return to steady state during standing, i.e., for t � 60 s.

Fig. 10. Dynamics of controlled variables for 45 � t � 90 s. A: peripheral
resistance in the upper body [Raup(t)]. B: cardiac contractility of the left
ventricle [clv(t)]. C: compliance of veins in the upper body [cvu(t)]. Results
were obtained by solving Eq. 13 together with equations for the cardiovascular
system (Eq. 2). Autonomic regulation yields increase in peripheral resistance,
cardiac contractility, and vascular tone. The latter yields a decrease in com-
pliance as shown. Timing of the different controls varies; especially, note that
cardiac contractility changes faster than resistances and capacitances. Regula-
tion of the remaining resistances, contractility, and compliances showed
similar responses.
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tractility of the left ventricle (clv), and venous compliance in
the upper body (Cvu). These results display quite different
dynamics of the three types of variables. In particular, the
compliance and peripheral resistance do not reach a steady
state during the 10 s after the transition from sitting to standing
(from 80 � t � 90 s), perhaps because the dynamics that
change the ventricular contractility occur over a much faster
time scale than those that affect resistances and compliances.
Finally, the dynamics of other resistances, capacitors, and atrial
contractility are similar to the parameters shown in Fig. 10.

CONCLUSION

In summary, we have developed an 11-compartment model
that can predict cerebral blood flow velocity and finger blood
pressure. This model includes a physiological description of
dynamics as a response to hydrostatic pressure changes during
postural change from sitting to standing. Furthermore, our
model includes nonlinear functions describing resistances of
the large systemic arteries as functions of pressure. To regulate
blood pressure and cerebral blood flow velocity after postural
change from sitting to standing, our model includes autonomic
regulation using first-order differential equations regulating
cardiac contractility, peripheral resistance, and vascular tone
(compliance). Furthermore, we have included an empirical
model describing the dynamics of cerebral vascular resistance.
Validation of our model against one data set showed that, by
including the mechanisms described above, our model is able
to reproduce the dynamics of blood flow velocity and blood
pressure needed to compensate for hypotension observed dur-
ing postural change from sitting to standing.

Modeling of physiological responses to standing enables a
better understanding of physiological mechanisms underlying
disorders related to orthostatic tolerance, e.g., orthostatic hy-
potension and syncope. Our model predicts that, in the absence
of regulatory mechanisms (Fig. 8), blood pressure and blood
flow velocity declined on the transition to standing and did not
recover to baseline in the upright position. This modeling result
has not been validated against data. However, similar re-
sponses have been observed clinically. For example, sustained
blood pressure reduction in the upright position is seen in
clinical syndromes with orthostatic hypotension associated
with autonomic failure (16, 17). Different etiologies and se-
verity of autonomic failure may lead to differences in patho-
physiological responses during the transition to standing. For
example, severe peripheral autonomic failure, such as pure
autonomic failure or diabetic neuropathy, may be associated
with orthostatic hypotension with no heart rate increment.
Cerebral autoregulation, which maintains cerebral perfusion
over a wide range of pressure (25), may be preserved, ex-
panded, or reduced in orthostatic hypotension. However, cere-
bral blood flow would decline with impairment of autoregula-
tion and/or when blood pressure is diminished below the
autoregulated range. A transient impairment of autonomic and
cerebral blood flow control is common in young people with
vasodepressor syncope. This is associated with a withdrawal of
sympathetic tone followed by a decline of blood pressure and
cerebral perfusion (12, 22, 24).

Furthermore, our results show that, by including passive
nonlinear responses of resistances in the large arteries, we can
obtain sufficient widening of the pulse pressure amplitude

observed immediately after the transition to standing. This
response is immediate and, thus, not a regulatory response but,
rather, a purely passive response that occurs because of the
nature of the underlying fluid dynamics. We have described an
elaborate model for predicting effects of hydrostatic changes,
even though this model was only validated for the transition
from sitting to standing, i.e., cos(�) � 1. The advantage of the
model derived in the present work is that it may be applicable
to prediction of hydrostatic effects observed during tilt-table
experiments.

The main accomplishment of this work is that our model
describes how autonomic regulation and cerebral autoregula-
tion play a synergistic role in the control of arterial blood
pressure and cerebral blood flow velocity. In particular, the
cerebral resistance first decreases and then increases during
active standing. This result is different from previous findings
(27), which suggested an initial increase followed by a de-
crease. However, the new result is not surprising, because the
present study was performed with a more complex closed-loop
model. The main advantage of the closed-loop 11-compart-
ment model presented in this study is that the cerebrovascular
resistance offers a more accurate representation of the brain.
For example, in previous work (27), the measured pressure was
an input and only one compartment was included. Hence, the
peripheral resistance was not distinguished between resistance
of the body and the brain. Furthermore, the curve for Racp

displays hysteresis effects: Immediately after standing, the
decrease of Racp is faster than the increase for t � 70 s during
the phase where blood flow velocity is returning to its normal
value. Hysteresis in vascular resistance in response to decreas-
ing and increasing pressures may reflect differences between
cerebral and peripheral vasculature that account for time lags
between central and peripheral responses. With normal auto-
regulation, blood flow velocity precedes changes in peripheral
blood pressure, reflecting local adjustments to intracranial
pressure (26). Finally, to obtain a blood flow velocity during
standing that is equivalent to that during sitting, the resistance
reaches a set point that is higher during standing than during
sitting.

Results for parameters representative of autonomic regula-
tion show that these parameters react as expected: peripheral
resistance and cardiac contractility increase, while compliance
decreases (Fig. 10). As described in RESULTS, the contractility
increases much faster than the peripheral resistance. This could
be due to the more rapid effects of parasympathetic withdrawal
acting on contractility than of sympathetic activation, which
has a later effect on contractility, peripheral resistance, and
compliance.

Finally, the optimized parameters depend on the initial
estimates and the optimization algorithm. In particular, some of
the maximum values for the resistances and compliances have
large values, which are physiologically unrealistic.

APPENDIX

The complete system of differential equations needed to describe
all flows and pressures shown in Fig. 1 consists of 11 ordinary
differential equations. For each of the nine compartments that repre-
sent the arteries and veins, we obtain differential equations of the form
of Eq. 2
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Ca

dpa

dt
� qav � qac � qaf � qau � pa

dCa

dt

Cau

dpau

dt
� qa � qal � qaup � pau

dCau

dt

Cal

dpal

dt
� qau � qalp � pal

dCal

dt

Caf

dpaf

dt
� qa � qafp � paf

dCaf

dt

Cac

dpac

dt
� qac � qacp � pac

dCac

dt

Cvl

dpvl

dt
� qalp � qvl � pvl

dCvl

dt

Cvu

dpvu

dt
� qvl � qaup � qvu � pvu

dCvu

dt

Cv

dpv

dt
� qvu � qafp � qvc � qv � pv

dCv

dt

Cvc

dpvc

dt
� qacp � qvc � pvc

dCvc

dt

where each of the flows is determined using Kirchhoff’s current law.
The flows are as follows

qav �
plv � pa

Rav

qau �
pa � pau

Rau

qal �
pau � pal � 
gh

Ral

qaf �
pa � paf

Raf

qac �
pa � pac

Rac

qaup �
pau � pvu

Raup

qalp �
pal � pvl

Ralp

qafp �
paf � pv

Rafp

qacp �
pac � pvc

Racp

qv �
pv � pla

Rv

qvu �
pvu � pv

Rvu

qvl �
pvl � pvu � 
gh

Rvl

qvc �
pvc � pv

Rvc

qmv �
pla � plv

Rmv

Finally, differential equations for the two compartments that represent
the left atrium and ventricle are given by

dVlv

dt
� qmv � qav

dVla

dt
� qv � qmv

For these compartments, pressures are computed using the heart
model (see MODELING BLOOD PRESSURE AND BLOOD FLOW VELOCITY.
Ventricular and atrial contraction).
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