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Abstract. This study shows how sensitivity analysis and subset selection can
be employed in a cardiovascular model to estimate total systemic resistance,
cerebrovascular resistance, arterial compliance, and time for peak systolic ven-
tricular pressure for healthy young and elderly subjects. These quantities are
parameters in a simple lumped parameter model that predicts pressure and
flow in the systemic circulation. The model is combined with experimental
measurements of blood flow velocity from the middle cerebral artery and arte-
rial finger blood pressure. To estimate the model parameters we use nonlinear
optimization combined with sensitivity analysis and subset selection. Sensi-
tivity analysis allows us to rank model parameters from the most to the least
sensitive with respect to the output states (cerebral blood flow velocity and
arterial blood pressure). Subset selection allows us to identify a set of indepen-
dent candidate parameters that can be estimated given limited data. Analyses
of output from both methods allow us to identify five independent sensitive
parameters that can be estimated given the data. Results show that with the
advance of age total systemic and cerebral resistances increase, that time for
peak systolic ventricular pressure is increases, and that arterial compliance is
reduced. Thus, the method discussed in this study provides a new methodology
to extract clinical markers that cannot easily be assessed noninvasively.
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1. Introduction. Cardiovascular system models have grown increasingly complex
in recent years as more attempts are made to simulate physiological systems ac-
curately. Examples of extensive models include the PNEUMA model developed
by Fan and Khoo [9] and the cardio-respiratory model developed by Lu et al. [20].
Fan and Khoo combined cardiovascular, respiratory, and control models to simulate
sleep apnea. The cardio-respiratory model by Lu et al. [20] was developed to predict
the response to forced vital capacity and Valsalva maneuvers. Each of these models
comprises more than one hundred differential equations and as many characterizing
parameters. However, neither model has been validated against clinical data for
the purpose of subject specific predictions. Combined with experimental data, such
models can be used to estimate parameters (also known as biomarkers) that cannot
be measured experimentally.

One approach to estimate model parameters is to use nonlinear optimization
techniques that minimize the least squares residual between computed and measured
quantities. For example, Olufsen et al. [28, 29] used the Nelder-Mead method [24]
to predict parameters in a complex cardiovascular model developed to predict blood
flow regulation during postural change from sitting to standing. In another study,
Neal and Bassingthwaighte [23] used a multi-step procedure for estimating subject-
specific values for seventy-four parameters to examine cardiac output and total
blood volume during hemorrhage.

The numerical optimization techniques used in this work necessitate some im-
portant considerations. First, any given set of optimal parameters only represents
a local solution to the minimization problem: i.e., they only guarantee that a local
minimum can been found. Parameters defining this local minimum may or may not
be within physiological range, and there may be multiple sets of parameters that
define the same model states. Thus, it is essential to compute initial, or “nominal,”
parameter values using a priori knowledge such as height and weight, literature,
or similar experiments. Second, the model output may be insensitive to some of
the model parameters: i.e., a small change in some parameters may give rise to
almost no change in the output states. It is not feasible to estimate insensitive
parameters [7], either from a physiological or from a numerical perspective [18].
Furthermore, if any of the insensitive parameters are physiologically important,
designing additional experiments may be necessary to estimate these parameters.
Finally, model parameters may depend on each other. For example, given a mean
flow through two resistance vessels, an infinite combination of resistances from each
vessel could combine to give the same overall resistance; thus both parameters can-
not be identified even though the model output will be sensitive to both parameters.

Some progress has been made toward stronger methodologies for parameter es-
timation. Ellwein et al. [7] used classical sensitivity analysis (as described by Es-
lami [8] and Frank [10]) to rank parameters according to sensitivity. This ranking
was used to separate parameters into two groups: one group consisted of parameters
that the model output was sensitive to, and another group consisted of parameters
that the model output was insensitive to. Ignoring the group of insensitive parame-
ters gave rise to more reliable parameter estimates with a similar model output. In
another study, Olansen et al. [27] used open-chest dog data combined with gradient-
based optimization and sensitivity analysis to parameterize a cardiovascular model.
For the latter study, the details of the chosen ranking algorithm were not revealed,
and neither of these studies attempted to identify dependencies between model pa-
rameters. Other studies by Burth, Verghese and Velez-Reyes [5, 39] used a subset
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selection algorithm to extract a set of independent parameters that can be esti-
mated given a set of data (we define these parameters as identifiable). However,
this study did not address the sensitivity of the model output to its parameters. In a
more recent study, Heldt [14] combined sensitivity analysis and the subset selection
method to identify a set of parameters that can be estimated reliably to predict
quantities in a beat-to-beat cardiovascular system model.

In this study we have made additional progress toward using mathematical mod-
els to estimate key parameters given limited experimental data. To illustrate our
method, we employ a simple five-compartment lumped parameter model that pre-
dicts cerebral blood flow velocity and arterial blood pressure in the systemic circu-
lation during rest (in sitting position). Similar to previous work [7], we rank model
parameters from the most to the least sensitive. In addition, we show how subset se-
lection [5, 39] can be used to specify a subset of independent candidate parameters.
Results from the sensitivity analysis and subset selection are combined to identify a
final subset of independent and sensitive parameters that we estimate using a Gauss
Newton gradient-based nonlinear optimization technique. This methodology (sen-
sitivity analysis, subset selection, and optimization) is used to extract physiological
biomarkers predicting systemic and cerebrovascular resistance, arterial compliance,
and time for peak systolic ventricular pressure using pulsatile finger blood pressure
and cerebral blood flow velocity data obtained non-invasively from twelve healthy
young and twelve healthy elderly subjects.

2. Methods.

2.1. Experimental methods. Data to be analyzed in this study included non-
invasive finger blood pressure and cerebral blood flow velocity measurements from
twelve healthy young subjects aged 22-39 years (with a mean age of 28.8±6.0 years)
and twelve healthy elderly aged 56-74 years (with a mean age of 66.1 ± 6.4 years).
Data were acquired in the Syncope and Falls in the Elderly (SAFE) laboratory
at Beth Israel Deaconess Medical Center, Boston, and subjects provided informed
consent signed by the Institutional Review Board at Beth Israel Deaconess Med-
ical Center. The right and left middle cerebral arteries were insonated from the
temporal windows with 2 MHz pulsed Doppler probes (MultiDop X4, DWL Neu-
roscan Inc. Sterling VA). Each probe was positioned to record the maximal flow
velocities and stabilized using a three-dimensional head frame positioning system.
Blood flow velocities were measured continuously in each of the middle cerebral
arteries (see Fig. 1). In addition, peak-systolic, end-diastolic, and mean blood flow
velocities were measured for each of the middle cerebral arteries. Blood pressure
was recorded continuously from the index finger (see Fig. 1) using a Finapres device
(Ohmeda Monitoring Systems, Englewood, CO) and blood pressure measurements
were intermittently validated using tonography. To eliminate gravitational changes
in blood pressure, the finger was kept at the level of the heart. The Finapres device
provides reasonably accurate estimates of intra-arterial pressure if the finger posi-
tion and temperature are kept constant [26]. The electrocardiogram was measured
from a modified standard lead II using a Spacelab Monitor (SpaceLab Medical Inc.,
Issaquah, WA). Signals were recorded at 500 Hz using a Labview Data Acquisition
System (NINDAQ) (National Instruments, Austin, TX). Measurements were ob-
tained from subjects resting in a sitting position with their legs elevated at ninety
degrees. Once a stable signal was obtained, data were recorded for five minutes.
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From the steady sitting signal fifty cardiac cycles were extracted and stored (down-
sampled to 50 Hz) for the offline model analysis.
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Figure 1. Arterial blood pressure (left) and cerebral blood flow
velocity (right) from a healthy young subject. The top panel shows
the entire time-series and the bottom panel shows a zoom over six
seconds (areas zoomed are marked by boxes in the top panel).

2.2. Modeling and analysis.

2.2.1. Basic cardiovascular model. In this study we used a simple lumped parameter
cardiovascular model of the systemic circulation similar to the model used in pre-
vious work [28, 29]. This model was originally developed to analyze cerebral blood
flow velocity vacp(t) [cm/s] and finger blood pressure pas(t) [mmHg] measurements
during orthostatic stress (sit-to-stand). In this study, the model was simplified to
only account for dynamics during rest (sitting). Included in the current model are
two arterial compartments and two venous compartments combining vessels in the
body and the brain, as well as one heart compartment representing the left ven-
tricle, Fig. 2. The left atrium was not modeled since previous studies [7] showed
that parameters characterizing this compartment were insensitive. Furthermore, no
experimental data were available predicting quantities in the pulmonary circulation.

The model uses a standard electrical circuit analogy in which the blood pressure
difference ∆p = p(t)− p0 [mmHg] plays the role of voltage, the volumetric flow q(t)
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Figure 2. Electrical circuit representing arteries and veins in the
systemic circulation, including the left ventricle “lv,” the systemic
arteries “as,” the cerebral arteries “ac,” the cerebral veins “vc,”
and the systemic veins “vs”. Each compartment contains a volume
V (t) [ml], a pressure p(t) [mmHg], and a compliance (capacitor) C
[ml/mmHg] (constant). Flow between compartments is marked by
q(t) [ml/s], and resistance to flow is marked by R [mmHg s/ml]
(constant). The aortic and mitral valves are marked by small
lines inside the left ventricle compartment. This model uses mea-
surements of cerebral blood flow velocity vacp(tj) = qacp(tj)/Aacp

[ml/s], where Aacp [cm2] (constant) denotes the vessel area, and
finger blood pressure pas(t) [mmHg]. These measurements are ob-
tained at locations marked by gray ovals.

[ml/s] plays the role of current, and stressed volume V (t) [ml] plays the role of elec-
trical charge. For each compartment the stressed volume is defined as the difference
between the total volume V (t) and the unstressed volume Vun (constant). Com-
pliance C [ml/mmHg] (constant) of the blood vessels is represented by capacitors,
and resistors R [mmHg s/ml] (constant) are the same in both analogies. Similar to
an electrical circuit, we define a pressure-volume relation of the form

V (t) = Vun = C (p(t) − p0) , where p0 = patm. (1)

As shown in Fig. 2, all capacitors are linked to ground: i.e., pressures are relative
to the exterior vascular pressure, set at the atmospheric pressure patm. Following
Ohm’s law the flow between two compartments is defined by

q(t) =
pin(t) − pout(t)

R
. (2)

Using these definitions, a differential equation for each of the arterial and venous
compartments was derived by differentiating (1), while the equation for the heart
compartment was obtained by imposing volume conservation. Thus the model can
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be described by a system of five coupled ordinary differential equations with state
variables x(t) = [pas(t), pac(t), pvs(t), Vlv(t)], representing pressure in the systemic
arteries pas(t), the cerebral arteries pac(t), the systemic veins pvs(t), the cerebral
veins pvc(t), and the left ventricular volume Vlv(t). These are given by

dpas(t)

dt
=

1

Cas

(
plv(t) − pas(t)

Rav(t)
− pas(t) − pvs(t)

Rasp
− pas(t) − pac(t)

Rac

)

dpac(t)

dt
=

1

Cac

(
pas(t) − pac(t)

Rac
− pac(t) − pvc(t)

Racp

)

dpvs(t)

dt
=

1

Cvs

(
pas(t) − pvs(t)

Rasp
+

pvc(t) − pvs(t)

Rvc
− pvs(t) − plv(t)

Rmv(t)

)
(3)

dpvc(t)

dt
=

1

Cvc

(
pac(t) − pvc(t)

Racp
− pvc(t) − pvs(t)

Rvc

)

dVlv(t)

dt
=

pvs(t) − plv(t)

Rmv(t)
− plv(t) − pas(t)

Rav(t)
,

where the valve resistances Rmv(t) and Rav(t) are functions of time and the ven-
tricular pressure plv(t) = f (t, Vlv(t)) is a function of the ventricular volume, as
discussed in detail below.

To model the opening and closing of the valves, a piecewise continuous function
representing the vessel resistance was developed, which define the “open” valve state
using a small baseline resistance and the “closed” state using a value several mag-
nitudes larger. This idea originally proposed by Rideout [36] and used in previous
work [7, 28, 29] can be formulated using time varying resistances of the form

Rmv(t) = min (Rmv,open + exp (−2(pvs(t) − plv(t))) , 10) ,

Rav(t) = min (Rav,open + exp (−2(plv(t) − pas(t))) , 10) . (4)

Following this equation, when plv(t) < pvs(t), blood flows into the ventricle and
the mitral valve is open; as plv(t) becomes greater than pvs(t), the resistance grows
exponentially to a large constant value. We used the value ten; this value was
chosen to ensure that there is practically no flow when the valve is closed. The value
remains there for the duration of the closed valve phase. The transition from open
to closed is not discrete; an exponential function is used for the partially opened
valve, with the amount of “openness” given as a function of the pressure gradient.
A smooth approximation was adapted from [6] to ensure that valve equations in (4)
are differentiable, a necessary condition for the sensitivity analysis and the gradient-
based optimization method [18]. Using the smooth approximation, the minimum
in the valve equations (4) was computed as,

min
ǫ

(x) = −ǫ ln

(
∑

i

exp(−xi/ǫ)

)
, (5)

where ǫ > 0 represents the degree of smoothness (large values of ǫ gives rise to more
smoothing) and x represents the vector (indexed by i) to be minimized.

For the left ventricle, we predicted the change in volume using the differential
equation,

dVlv

dt
= qvs − qas,

while we used a simple elastance model defined by

plv(t) = Elv(t) (Vlv(t) − Vd) , (6)
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to predict ventricular pressure. In this model, Elv(t) [mmHg/ml] is the ventric-
ular elastance; Vlv(t) is the stressed ventricular volume; and Vd (constant) is the
ventricular volume at zero diastolic pressure [31]. Note Vlv(t) is computed using
the volume conservation law in (3). No constraint was imposed to ensure that
Vlv(t) > Vd. However, this did not pose any problems for our computations as
shown in Fig. 6. To compute ventricular pressure we need only to prescribe an
elastance function Elv(t). We modify a model developed by Heldt [15] to obtain

Elv(t) =






Em +
EM − Em

2

[
1 − cos

(
π

TM

)]
, 0 ≤ t̃ ≤ TM

Em +
EM − Em

2

[
cos

(
π

Tr
(t̃ − TM )

)
+ 1

]
, TM ≤ t̃ ≤ TM + Tr

EM , TM + Tr ≤ t̃ < T.

The parameters TM [s] and Tr [s] are functions of the cardiac cycle T [s], TM being
the time of peak elastance and Tr the remaining time for the start of diastolic
relaxation. To estimate these parameters they are set up as fractions TM,frac =
TM/T and Tr,frac = Tr/T , where T [s] is the length of the cardiac cycle (obtained
for each cardiac cycle using measurements of heart rate). Finally, we define Em and
EM [mmHg/ml] as the minimum and maximum elastance values.

In summary, the model discussed above can be written as

dx

dt
= f(t, x, θ),

where x(t) = [pas(t), pac(t), pvs(t), pvc(t), Vlv(t)], represents the five states. This
model has a total of sixteen parameters, including five heart parameters

θheart = {Vd, EM , Em, EM,frac, Tr,frac} ,

and ten cardiovascular parameters

θcardiovasc = {Rav,open, Rasp, Rac, Racp, Rvc, Rmv,open, Cas, Cac, Cvc, Cvs} .

We also include a scaling factor Aacp, which represents the combined cross-sectional
area of the cerebral arteries. This factor relates the cerebral blood flow to the
cerebral blood flow velocity, by qacp(t) = vacp(t)Aacp.

2.2.2. Model parameters. Initial values for the cardiovascular parameters (see Ta-
ble 1), including those for the elastance heart model, can be found from physiolog-
ical considerations. The initial iterates for Em and EM [mmHg/ml] are taken from
Ottesen et al. [31]. Initial values for TM,frac and Tr,frac were predicted using values
given by Ottesen et al. [31] and Heldt [14].

Initial values for resistors and capacitors were determined separately for each
subject studied. We defined the initial value for the peak systolic ventricular pres-
sure as the peak of the experimentally predicted finger pressure. To allow blood flow
down the pressure gradient, we defined initial values for systemic arterial pressure
as 99.5% of the peak finger pressure and cerebral arterial pressure as 98% of the
peak finger pressure. We have no information about venous pressures; thus we chose
to set them based on standard physiological considerations (see e.g. [3, 13, 38]). We
calculated total blood volume (in ml) as a function of body surface area, BSA (in
m2) and gender [37] of the form

Vtot =

{
(3.29 · BSA − 1.29) · 1000, male
(3.47 · BSA − 1.954) · 1000, female.

(7)
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Table 1. Initial values for all model parameters. In the second col-
umn, pd

max [mmHg] is the maximum of the pressure data; the total
volume Vtot [ml] is defined in (7), and the total flow qtot = Vtot/60
[ml/s]. The parameter Aacp = qacp/vacp [cm2] relates cerebral
blood flow to cerebral blood flow velocity.

Pressure k · pd
max Flow k · qtot Resistances Ohm’s law

[mmHg] k [ml/s] k [mmHg s/ml]
plv,sys 1.000 qav 1.0 Rav,open (plv,sys − pas)/qav

pas 0.995 qmv 1.0 Rmv,open (pvs − plv,dia)/qmv

pac 0.980 qasp 0.8 Rasp (pas − pvs)/qasp

pvc 10 [mmHg] qac 0.2 Rac (pas − pac)/qac

pvs 5 [mmHg] qacp 0.2 Racp (pac − pvc)/qacp

plv,dia 2 [mmHg] qvc 0.2 Rvc (pvc − pvs)/qvc

Volume k · Vtot Capacitors Heart parameters
[ml] k [ml/mmHg] Ei [mmHg s/ml], Vd [ml]
Vlv 65 [ml] Cas 0.35 Vas/pas TM,frac 0.38
Vas 0.1094 Cac 0.35 Vac/pac Tr,frac 0.18
Vac 0.0193 Cvs 0.08 Vvs/pvs Em 0.049
Vvc 0.0783 Cvc 0.08 Vvc/pvc EM 2.49
Vvs 0.5634 Vd 10

To estimate BSA we used a relation originally proposed by Mosteller [21] and later
reformulated by Reading and Freeman [35] on the form

BSA =

√
w · h
3600

,

where w [kg] denotes the subjects weight and h [cm] is the subject’s height. Based on
the assumption that the systemic volume circulates in one minute [4] we determined
the total systemic flow as qtot = Vtot/60 [ml/s]. We further assumed that 20% of
the flow goes to the brain, while 80% goes to the body: i.e., the systemic flow
qasp = 0.8 · qtot and the cerebral flow qac = qacp = qvc = 0.2 · qtot . Note these
quantities are time averaged. They will be used to determine nominal parameter
values and initial values for the states. We define initial resistances using Ohm’s
law: i.e., Ri = ∆p/qi [mmHg s/ml] where ∆p denotes the pressure drop across
the resistor Ri. Distribution of the total blood volume to each compartment is
based on work by Beneken and DeWit [3], which gives both total volumes and
estimates for the unstressed volume for each compartment. Based on these values
initial iterates for each capacitor i are obtained using the pressure volume relation
Ci = (Vi − Vun,i)/pi [ml/mmHg].

2.2.3. Parameter estimation. The objective of this study is to identify a set of model
parameters that in a reliable way can be estimated given measured values of arterial
blood pressure pas(t), j = 1, ..., N and cerebral blood flow velocity vacp(tj), j =
1, ..., N , where N is the number of pressure and velocity observations, respectively.
Data were analyzed for M = 50 cardiac cycles at a frequency of 50 Hz. To estimate
these parameters we used nonlinear optimization minimizing the residual between
computed and measured (noted by superscript d) pressure and velocities relative to



PARAMETER ESTIMATION AND IDENTIFICATION 101

the measured quantities over all samples tj . To this end we defined the vector y
spanning both pressure and velocity: i.e., y has 2N entries, given by

y = [pas(t1), . . . , pas(tN ), vacp(t1), . . . , vacp(tN )]
T

. (8)

To ensure that the model captures both the systolic values, noted by subscript “sys,”
and the diastolic values, noted by subscript “dia,” of the pressure and velocity for
each cardiac cycle, we defined additional vectors yi, i = sys, dia by

ysys = [pas,sys,1, . . . , pas,sys,M , vacp,sys,1, . . . , vacp,sys,M ]T ,

ydia = [pas,dia,1, . . . , pas,dia,M , vacp,dia,1, . . . , vacp,dia,M ]T .

To find systolic and diastolic values we computed the maximum (systolic) and min-
imum (diastolic) values of pressure and velocity for each cardiac cycle. To ensure
that the functions are smooth we used the smoothing function in (5) to compute
both systolic and diastolic values. Also note that each of these vectors concatenate
pressure and velocity: i.e., each vector has 2M entries. These quantities do not
depend on time, but represent the minimum (diastolic) and maximum (systolic)
values for each cardiac cycle. Combining the vectors y, we defined the residual
vector between computed (yc) and measured (yd) quantities as

R̂ =

[
yc
1 − yd

1√
Nyd

1

, . . . ,
yc
2N − yd

2N√
Nyd

2N

,
yc

sys,1 − yd
sys,1√

Myd
sys,1

, . . . ,
yc

sys,2M − yd
sys,2M√

Myd
sys,2M

,

yc
dia,1 − yd

dia,1√
Myd

dia,1

, . . . ,
yc

dia,2M − yd
dia,2M√

Myd
dia,2M

]T

.

Since velocity and pressure have different units, and since components in this vector
have different lengths, we scaled the residual by the value of the measurements and
by the square root of the number of measurements (N, M , respectively). This

definition of the residual vector R̂ gave rise to a least squares cost-function J of the
form

J = R̂T R̂ = (9)

1

N

N∑

i=1

∣∣∣∣∣
pc

as,i − pd
as,i

pd
as,i

∣∣∣∣∣+
1

N

N∑

i=1

∣∣∣∣∣
vc

acp,i − vd
acp,i

vd
acp,i

∣∣∣∣∣+

1

M

M∑

i=1

∣∣∣∣∣
pc

as,sys,i − pd
as,sys,i

pd
as,sys,i

∣∣∣∣∣+
1

M

M∑

i=1

∣∣∣∣∣
pc

as,dia,i − pd
as,dia,i

pd
as,dia,i

∣∣∣∣∣+

1

M

M∑

i=1

∣∣∣∣∣
vc

acp,sys,i − vd
acp,sys,i

vd
acp,sys,i

∣∣∣∣∣+
1

M

M∑

i=1

∣∣∣∣∣
vc

acp,dia,i − vd
acp,dia,i

vd
acp,dia,i

∣∣∣∣∣ .

Instead of using optimization to estimate all model parameters, we employed a
number of criteria discussed below to identify a limited set of parameters to be
estimated. We used sensitivity analysis to rank parameters from the most to the
least sensitive. Subsequently, we used subset selection to identify a limited num-
ber of independent candidate parameters. Combining results from both analyses
allowed us to pick a set of parameters to be estimated for all healthy young and
healthy elderly subjects. Finally, we used nonlinear optimization to estimate the
parameters.
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2.2.4. Sensitivity analysis. We define parameters whose change has a large impact
on the model as “sensitive” and parameters whose change has a negligible affect on
the model as “insensitive.” Attempting to identify insensitive parameters can cause
poor behavior of optimization routines [18] and give rise to optimal values that are
outside of physiological range. Similar to previous work by Ellwein et al. [7] we
used classical sensitivity analysis to rank the model parameters from the most to
the least sensitive.

Sensitivities are computed with respect to output vector y (8) that concatenates
pressure and velocity evaluated at times of the measured observations tj . Note that
velocities vacp(t) (the second half of y) are not state variables in the differential
equation model but are obtained by scaling the cerebrovascular flow qacp(t), found
using Ohm’s law (2), with the total area Aacp (constant) of the cerebral vessels:

vacp(t) =
qacp(t)

Aacp
=

pac(t) − pvc(t)

AacpRacp
. (10)

Optimization methods (discussed below) are more efficient when all parameter val-
ues are of the same order of magnitude. The nominal parameter values for our
model differ by three orders of magnitude (for example, Em ≈ 0.05, while Cvs ≈ 36
initially). So, we rescaled the parameters by the natural logarithm: i.e., the model

input to the optimizer is given by θ̃ = ln(θ).
Using the scaled parameters, the relative (nondimensional) sensitivities Si,k of

the output yk to the i’th parameter is defined by

Si,k =
∂yk

∂θ̃i

θ̃i

yk

∣∣∣∣∣
θ̃=θ̃0

, θ̃i, yk 6= 0.

Note, the length of Si,k is 2N , since Si,k concatenates sensitivities of pressure and
velocity with respect to each of the model parameters. As discussed in the model
section, all model components are differentiable. We computed the derivative in the
sensitivity equation using the forward difference approximation

∂yk

∂θ̃i

≈ yk(t, θ̃ + hei) − yk(t, θ̃)

h
,

where

ei =

[
0 . . . 0

i

1̂ 0 . . . 0

]T

is the unit vector in the i’th component direction.
The forward difference approximation is less accurate than the analytic deriva-

tives computed using automatic differentiation as proposed by Ellwein et al. [7] but
is computationally faster and provides sufficient accuracy for our purposes. We used
a scaled 2-norm to get the total sensitivity Si to the i’th parameter

Si =

(
1

2N

2N∑

k=1

S2
i,k

)1/2

.

The classical sensitivity analysis described above is a local analysis, and thus sen-
sitivities depend on the values of the parameters. In this study the goal was to use
sensitivity analysis to rank parameters in order of sensitivity and use this ranking
in conjunction with results from subset selection to identify a set of parameters that
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can be estimated for all subjects. This is done prior to actual parameter estimations;
thus the sensitivity ranking was computed using nominal parameter values.

2.2.5. Subset selection. Attempting to optimize all parameters in the model can lead
to unrealistic parameter estimates and poor optimizer performance, particularly if
some of the model parameters are interdependent. To determine how many and
which parameters can be identified reliably we implemented a modified version of
the subset selection method (see Appendix for detail), originally proposed by Velez-
Reyes [39]and discussed further by Burth et al. [5], and by Heldt [14].

The result of the subset selection process was a list of identifiable parameters
and a list of parameters that should be held constant at nominal parameter values
during the optimization process. To obtain physiologically relevant parameters, this
method was carried out combined with expert knowledge of the system studied. For
example, subset selection picked the scaling factor Aacp as an identifiable parame-
ter, while the cerebrovascular resistance Racp was grouped with parameters to be
kept fixed. However, the parameter Aacp only appears once in the ODE system as a
factor next to Racp, while Racp also appears inside one of the differential equations.
Furthermore, Racp is one of the biomarkers that we find important to estimate.
Consequently, we fixed the parameter Aacp at its nominal and subsequently subset
selection picked the parameter Racp. Another observation was that for a healthy
heart, the resistances associated with the heart valves Rmv,open and Rav,open should
be small and should remain fixed in order to obtain a small pressure gradient at the
time of peak blood flow [4]. However, in particular Rmv,open is very sensitive, which
makes sense: large valve resistances could indicate a blockage of the valve, and a
large change in this parameter does have a significant impact on the model out-
put. In this study we only analyzed data from healthy subjects; thus we evaluated
sensitivities using nominal parameter values.

In summary, we used sensitivity analysis to rank parameters from the most to
the least sensitive. Subsequently, we used subset selection and expert knowledge
to predict independent candidate parameters. Results from both analyses were
combined to find a limited set of independent and sensitive candidate parameters
to be estimated for all subjects. To estimate these model parameters we used a
trust-region variant of the gradient-based Gauss-Newton optimization method to
minimize the cost J defined in (9). Gauss-Newton is an iterative method [18]
that at each iteration uses a solution based on a local linear approximation to
compute the next iterate. The theory supporting our method predicts convergence,
even when the initial parameter estimates are far from the solution, and rapid
convergence, when near the solution. We ran optimizations with the candidate
parameters against a subset of our subjects and further adjusted the candidate list
based on the performance of the optimizer.

3. Results. We analyzed data from twelve healthy subjects aged 22-39 years and
twelve healthy elderly subjects aged 56-74 years with characteristics summarized
in Table 2. Given initial values for model parameters we computed and ranked
sensitivities for fifteen model parameters with respect to cerebral blood flow velocity
vacp(t) and arterial blood pressure pas(t). An overall rank (see Fig. 3) was obtained
from the average sensitivities across each group of subjects. As shown in Table 3,
the output states (vacp(t) and pas(t)) were also highly sensitive to initial values.

Subset selection was used to identify a set of independent candidate parameters.
We repeated the subset selection for all datasets. It should be noted that subset
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Table 2. Characteristics for both groups of subjects. For each
group of subjects diastolic (D), systolic (S), and mean (M) veloci-
ties are followed by diastolic (D), systolic (S), and mean (M) pres-
sures. Each row contains values obtained from the data (d) and
the model (c). The top row gives the mean values computed as
an average over all periods; the second row gives the correspond-
ing standard deviation; and the last row gives the percent error
obtained as the difference between measured and computed values
relative to the measured values.

Young Elderly
Velocity [cm/s] Pressure [mmHg] Velocity [cm/s] Pressure [mmHg]
D S M D S M D S M D S M

Mean values Mean values
d 42 98 63 66 116 82 d 34 80 53 73 134 94
c 48 97 71 67 129 95 c 34 67 50 69 132 98

Standard dev Standard dev
d 8.5 15 11 7.6 14 8.4 d 6.9 16 11 4.7 11 5.6
c 9.9 15 12 8.1 14 10 c 5.9 14 9.5 3.1 13 5.6

% Error % Error
14 4.2 13 2.8 11 16 4.2 17 4.1 6.2 4.0 4.6

Figure 3. Overall ranking of the scaled model parameters ln(θ)
with one standard deviation for the healthy young subjects (dark
marks) and healthy elderly subjects (light marks) ranked from the
most to the least sensitive.
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Table 3. Table of ranked sensitivities to initial conditions.

Parm Sensitity rank Sensitity rank
Young Elderly

pas,0 1.87 1 1.78 1
pvs,0 0.71 2 0.66 3
Vlv,0 0.62 3 0.98 2
pac,0 0.24 4 0.22 4
pvc,0 0.14 5 0.13 5

selection does not depend on the output data; however, it is a local analysis: i.e.,
results will vary with the model parameters. For this study initial model parameters
were predicted using morphometric information from each subject. In addition heart
rate data were used as an input for each subject to determine the constant T (the
length of each cardiac cycle), which is used in (6) to calculate left ventricular pres-
sure. Results (see Fig. 4) showed that for both healthy young and healthy elderly
subjects parameters Rasp, Racp, Cas, TM,frac, and EM were picked for all subjects.
In addition for the healthy young group, Cac was picked once, while Cvs and Em

were picked twice. For the healthy elderly group, Cac was picked for eleven subjects,
Cvs was picked for eight subjects, and Em was picked for three subjects. Four of
the parameters chosen by subset selection for all subjects Rasp, Racp, TM,frac, and
EM were sensitive. Consequently, these parameters were included in the final set
of parameters to be estimated for all subjects. The final parameter, picked for all
subjects, was Cas, whose sensitivity is lower (see Fig. 3). For the elderly subjects
two additional parameters were picked with high frequency: Cac, which we didnt
include since it is insensitive, and Cvs. Cvs has high sensitivity, and thus it should
be included, but this parameter caused poor convergence of the optimizer; thus we
left it out of the final set. Based on these observations the final set of parameters
to be estimated for all subjects included Racp, Rasp, TM,frac, EM , and Cas.

Optimized parameter values are summarized in Table 4. Results showed that
Racp, Cas (with a 10% confidence), and TM,frac differ between groups. This table
also showed, as expected, that the total systemic resistance differs between the
two groups. We computed a linear correlation factor (R2 value) between computed
and measured values of pressure and velocity. For young subjects overall correlation
coefficients for pressure and velocity were 0.84 and 0.86, respectively. For the elderly
subjects, the correlation was somewhat lower: 0.80 for blood pressure and 0.78 for
blood flow velocity.

We also compared diastolic, systolic, and mean values for each signal. For the
young subjects, the model gave rise to mean values that were approximately 15%
higher than the corresponding measured values. This can be attributed to the fact
that the model does not account for wave reflection. Note, our model does not in-
clude the dicrotic notch. The model also gave rise to systolic pressures and diastolic
velocities that were approximately 12% too high, while the diastolic pressures and
the systolic velocities were significantly more accurate, with less than 5% error. On
the other hand, for the elderly subjects, the model did not systematically produce
an overshoot or an undershoot. The systolic and diastolic values had a larger error,
while the mean values were predicted more accurately. Even though these errors
seem large, it should be noted that the model does not account for all demographic
characteristics or for fluctuations due to respiration. Overall, the model predicts



106 POPE, ELLWEIN, ZAPATA, NOVAK, KELLEY AND OLUFSEN

Figure 4. Frequencies of parameters from subset selection. Re-
sults for healthy young subjects are marked by dark bars, while
results for healthy elderly subjects are marked by light bars. Note
parameters Rasp, Racp, Cas, TM,frac, and EM were picked for all
datasets. In addition, for healthy young subjects, Cac was picked
once, while Cvs and Em were picked twice. For the healthy elderly
subjects, Cac was picked for 11 subjects, Cvs was picked for eight
subjects, and Em was picked for three subjects.

the data well as shown in Fig. 5, which shows an example computation of vacp(t)
and pas(t) using optimized parameters for a young subject. In addition Fig. 6 shows
all internal states including ventricular pressure plv(t) and volume Vlv(t), systemic
venous pressure pvs(t), and cerebral arterial pac(t) and venous pvc(t) pressure. One
limitation of our model is that it under-predicts cardiac output (not shown) by
about 35%, and ventricular volume Vlv(t) were shifted down toward lower values
(see Fig. 6).

Another advantage of only identifying a limited number of parameters is that
the computational efforts are significantly reduced. For most subjects, identifica-
tion of five parameters required approximately ten iterations. These ten iterations
lead to approximately sixty evaluations of the cost function (defined in (9)), one
evaluation for each calculation of the cost function, and five additional evaluations
used to calculate the finite difference Jacobian. The total computation time for the
optimization was approximately eight hundred seconds (just over thirteen minutes)
on a MacBook Pro 2.33 GHz laptop with 2 GB of memory running Matlab 7.4.

4. Discussion. This study showed that sensitivity analysis and subset selection
enabled us to reliably identify five independent and sensitive parameters in a car-
diovascular model, including a total of sixteen parameters. These results were
obtained with a model that predicts cerebral blood flow velocity and arterial blood
pressure using data from twelve healthy young and twelve healthy elderly subjects.
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Table 4. Mean and standard deviation for initial and optimized
values of the 5 identifiable parameters Rasp, Racp, Ca, TM,frac, and
EM . In addition, we have predicted the total resistance and com-
pared that between young and elderly subjects. Since this is a
derived parameter, no initial values are given. For each param-
eter the top row is obtained for the young subjects (marked by
Y), while the bottom row denotes values obtained for the healthy
elderly subjects (marked by E). The last column shows p-values
comparing the optimized parameter values between healthy young
and healthy elderly subjects.

Parm Mean Std Mean Std p-value
Initial parm Optimized parm

Rasp Y 1.9 0.40 3.1 1.05
E 2.0 0.32 3.8 1.38 0.22

Racp Y 7.1 1.5 4.6 0.82
E 17 3.2 6.4 1.57 0.00

Rtot Y - - 1.9 0.4
E - - 2.5 0.7 0.02

Cas Y 1.5 0.30 0.53 0.15
E 1.3 0.17 0.41 0.17 0.07

TM,frac Y 0.38 0.00 0.12 0.015
E 0.38 0.00 0.22 0.084 0.00

EM Y 2.5 0.00 4.3 1.5
E 2.5 0.00 4.0 1.7 0.64

The five identifiable parameters were cerebrovascular resistance Racp, systemic re-
sistance Rasp, arterial compliance Cas, time for peak elastance relative to the length
of the cardiac cycle TM,frac, and maximum elastance EM . During the optimization
procedure these five parameters were identified, while all other parameters were
kept fixed at their nominal parameter values.

The major advantage of limiting the number of parameters to be identified is
that the parameter estimates become more reliable. For the twenty-four datasets
analyzed in this study (twelve healthy young and twelve healthy elderly), reducing
the number of parameters to be identified reduced the standard deviation for each
parameter by several orders of magnitude. Furthermore, reducing the number of
parameters to be optimized reduced the interdependency of the model parameters.
For example, in this model, Racp and Aacp are both sensitive (see Fig. 3), but they
appear multiplied by each other in the calculation of cerebral blood flow velocity
(10). Thus an infinite number of combinations of values for these two parameters
could combine to give the same output states, preventing parameter values from be-
ing uniquely determined. Thus, we kept one of the two parameters (Aacp) constant,
while we allowed the other parameter (Racp) to fluctuate.

However, it is important to remember that the model does depend on the re-
maining eleven non-optimized parameters. Consequently, it becomes essential how
these are calculated, since many of them vary by age, gender, height, mean pressure,
etc. Nominal values for these non-optimized parameters were found as described
previously.
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Figure 5. Experimental data (gray) and optimized (black) values
for arterial pressure pas(t) and cerebral blood flow velocity vacp(t)
for a healthy young subject. Top panel show results over the entire
time-series, while the bottom panel shows a zoomed window from
15 < t < 20 seconds.

A limitation of this study is that subset selection does not always pick the param-
eters that we find the most physiologically relevant. For example, subset selection
often picked Aacp over Racp. However, our goal was to predict Racp. Thus, we
chose to keep Aacp fixed at its nominal value while allowing Racp to vary. With this
additional constraint subset selection always picked Racp as one of the parameters
to be estimated. Another possibility would be to create a new parameter defined
as the product of these two parameters. This composite parameter could then be
compared between different groups of subjects, yet it would have less physiological
accuracy than examining the parameters separately. Another advantage of a com-
bined parameter is that we do not have to account for subject variation in total
area Aacp. While transcranial Doppler studies by Aaslid and others [1, 19, 32] note
that the cross-sectional area of the cerebral arteries is relatively constant over a
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Figure 6. Additional model states including ventricular pressure
plv(t) and volume Vlv(t), systemic venous pressure pvs(t), cerebral
arterial pressure pac(t), and cerebral venous pressure pvc(t). These
results are shown for the same healthy subject used for computa-
tions depicted in Fig. 5.

wide range of mean flow velocities, the area do vary between subjects. Between-
subject variation is not accounted for in this study, but Aacp could be determined
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explicitly for each subject using vessel diameters measured on magnetic resonance
angiographs.

With these modifications, subset selection picked the two major resistances Racp

and Raps. Computations showed that Racp varied significantly between groups of
subjects, while Rasp did not. We did expect to find changes in Rasp. However, due
to the simplicity of the cardiovascular model, and without any flow or velocity mea-
surements for this portion of the system, we cannot make any conclusions on this
part of the model. On the other hand, the total systemic resistance did show signif-
icant changes between the two groups of subjects. Classically, the total peripheral
resistance is defined as the mean arterial pressure over cardiac output [2]. Given a
mean pressure of 100 mmHg and an average cardiac output of 5 l/min (83.3 ml/s)
the total resistance is 1.2 mmHg s/ml. Our results predicted Rasp as 1.9 mmHg s/ml
for the healthy young subjects and 2.5 mmHg s/ml for the healthy elderly people.
The model proposed here is validated against only cerebral blood flow velocity data
and arterial blood pressure data. One limitation of our study was that, the model
underestimated cardiac output. For most subjects cardiac output was calculated to
be about 65% of a standard cardiac output, which led to higher values for the total
resistance. One reason for our underestimation of cardiac output could be that the
model does not include the left atrium, which plays the role of providing a preload
for the left ventricle. However, results from our previous studies [7] showed that
parameters characterizing this compartment were insensitive and that addition of
the compartment did not significantly improve our results. Another reason could
be that we have not accounted for the pulmonary circulation, which provides an
additional reservoir for the system, a modification worth analyzing in future studies.
Thus to ensure accurate cardiac output estimates we propose to either include mea-
surements of cardiac output (which should be incorporated into the cost function)
or to predict cardiac output from the blood pressure measurements, as suggested
by Parlikar et al. [33], Wesseling et al. [41], and Mukkamala et al. [22].

Another traditional measure of resistance is the resistance index defined as the
blood flow velocity pulse over the systolic velocity: i.e., RI = (vsys

acp − vdia
acp)/vsys

acp

[25, 34], and the pulsatility index defined as the blood flow velocity pulse over
the mean blood flow velocity: i.e., PI = (vsys

acp − vdia
acp)/vacp [12, 25]. While these

indices may be useful for detecting differences within a subject, we did not detect
any differences between the two groups studied. For the healthy young subjects
RId = 0.51 and RIc = 0.57, while for the healthy elderly subjects RId = 0.49 and
RIc = 0.58. Similarly, for the healthy young subjects the pulsatility indices were
PId = 0.69 and PIc = 0.89, while for the healthy elderly subjects PId = 0.66 and
PIc = 0.87. For all indices superscript d denotes that the quantity is obtained from
measurements and c denotes that the quantity is extracted from the model.

Another observation was that subset selection picked Cas (systemic arterial com-
pliance) rather than Cvs (systemic venous compliance), which is more sensitive (see
Table 3). From a physiological viewpoint Cvs may be more significant; however, Cas

is significantly closer to the data collection site (finger arterial pressure); thus this
parameter likely plays a larger role in predicting the pressure data. To investigate
this further, we suggest testing if subset selection would pick Cvs if Cas is kept fixed
at its nominal parameter value.

We also observed that Rmv,open was very sensitive, but physically, we know that
all subjects had well functioning heart valves. Consequently, this parameter should
remain small and not be optimized. In fact, subset selection did initially pick this
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parameter. However, optimizing it caused computed ventricular pressures to be
outside of the physiological range. On the other hand, Rav,open had a low sensitivity
and was never picked; thus we did not have to include special considerations for
this parameter.

Finally, we observed that for the healthy elderly subjects, subset selection picked
seven parameters rather than five. The two additional parameters included Cac,
which is highly insensitive, and Cvs. To study the effect of this difference, we
ran simulations for the elderly optimizing all seven parameters. Including both
additional parameters led to poor performance of the optimizer. This is predictable
since we included an insensitive parameter (Cac), which cannot easily be estimated
given the data. Including six parameters (i.e., adding the parameter Cvs) also led
to poor performance of the optimizer. This cannot be explained by insensitivity,
but may be related to parameter dependencies not captured by the subset-selection
algorithm. More research into this will be done in future work.

Regarding the heart parameters, subset selection identified two parameters: time
for maximum elastance relative to the length of the cardiac cycle (TM,frac) and the
maximum elastance (EM ). The parameter TM,frac differed significantly between the
two groups of subjects, while no statistical significance was observed for EM . The
larger TM,frac value found in the elderly subjects can be explained by accounting
for wave-reflection as described by Vlachopoulos and O’Rourke [40]. In elderly
people, stiffer arteries cause the reflected pressure wave to augment the forward
wave coming from the ventricle in late systole. This appears as a peak in the aortic
pressure waveform that occurs later than and partially masks the systolic peak.
Since the sole generator of the arterial waveform in our model is the ventricular
pressure function, it is natural that this feature observed in elderly subjects appears
in the TM,frac parameter.

It should be noted again, that this study included a simple heart model, which
may not capture as many physiological attributes as other more detailed models,
such as the fourteen parameter model developed by Ottesen and Danielsen [30]. A
nice feature that we found (not shown) is that if one replaces the simple four pa-
rameter heart model with Ottesen and Danielsens fourteen parameter heart model,
subset selection still identifies the same three cardiovascular parameters in addition
to three heart parameters.

Mathematical models studied in the last decade have tended to be large com-
prehensive models with many states and parameters. Modelers often praise these
models for their complexity and biological relevance, while experimentalists criticize
the same models for being of little use for prediction. One of the main problems is
that it is not possible to identify model parameters and compare these over large
datasets. Standard deviations in parameters are large, in particular because such
models often contain insensitive and interdependent parameters that hamper pa-
rameter identification and optimization. In this study, we have shown that subset
selection and sensitivity analysis combined with measurements of cerebral blood
flow velocity and arterial blood pressure can be used to identify five model parame-
ters. Having a limited number of parameters allowed us to identify two biomarkers
that vary between healthy young and elderly subjects: our modeling revealed, as
expected, that cerebrovascular resistance and time for peak elastance was higher in
healthy aging. While these physiological results are not new, they show that the
proposed parameter identification methodology has potential to be applied to clini-
cal studies. In future work we plan to use this methodology to predict biomarkers in
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more comprehensive models such as the blood flow and pressure regulation model
developed by Olufsen et al. [28, 29].
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Appendix. Subset selection analyzes the Jacobian matrix (R′ = dR/dθ̃) computed
from the scaled residual vector R. The entry at row i and column j of the Jaco-
bian is ∂Ri/∂θ̃j. Using the Jacobian, singular value decomposition R′ = UΣV T

is used to obtain a numerical rank for R′. This numerical rank is then used to
determine ρ parameters that can be identified given the model output y defined in
(8). QR decomposition is used to determine the ρ identifiable parameters to which
our system is sensitive as a group. This differs from sensitivity analysis, which finds
parameters to which our system is individually sensitive. The subset selection al-
gorithm presented here is similar to the one used in [5, 14]. Our method differs in
our determination of the number of identifiable parameters. Previous methods look
for large gaps in the eigenvalues of the model Hessian. In our problem such gaps
do not exist, so we use an error estimate in our computation of the Jacobian as a
lower bound on acceptable singular values.
Subset selection algorithm:

1. Given an initial parameter estimate, θ̃0, compute the Jacobian, R′(θ̃0) and
the singular value decomposition R′ = UΣV T , where Σ is a diagonal matrix
containing the singular values of R′ in decreasing order, and V is an orthogonal
matrix of right singular vectors.

2. Determine ρ, the numerical rank of R′. This can be done by determining a
smallest allowable singular value.

3. Partition the matrix of eigenvectors in the form V = [Vρ Vn−ρ].
4. Determine a permutation matrix P by constructing a QR decomposition with

column pivoting, see [11] p. 235, for V T
ρ . That is, determine P such that

V T
ρ P = QR,

where Q is an orthogonal matrix and the first ρ columns of R form an upper
triangular matrix with diagonal elements in decreasing order.

5. Use P to re-order the parameter vector θ̃0 according to ˆ̃θ0 = PT θ̃0.

6. Make the partition
ˆ̃
θ0 = [

ˆ̃
θ0,ρ

ˆ̃
θ0,n−ρ] where

ˆ̃
θ0,ρ contains the first ρ elements

of ˆ̃θ0. Fix ˆ̃θn−ρ at the a priori estimate ˆ̃θ0,n−ρ.

7. Compute the new estimate of the parameter vector
ˆ̃
θ by solving the reduced-

order minimization problem

ˆ̃
θ = arg minθ̃J(θ̃), with

ˆ̃
θn−ρ fixed at nominal values

ˆ̃
θ0,n−ρ.
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Steps one and two are used to determine the numerical rank ρ of R′. The small-
est singular value can be found by analyzing the Jacobian error bound. Since the
Jacobian is computed using forward differences, the error of the Jacobian is approx-
imately the square root of the error tolerance of the ODE solver. Thus if ǫS is the
Jacobian error, then, according to [11] p. 428, this error can change the singular
values of the Jacobian by ǫS . Thus, we cannot trust any singular value smaller than
ǫS, and consequently, we use ǫS as the smallest acceptable singular value. In this
study we used Matlabs differential equations solver ODE15S with an absolute error
tolerance of 10−6: i.e., the error of the numerical model solution is of order 10−6 and

the error in the Jacobian matrix is approximately
√

10−6 = 10−3. Consequently,
singular values should not be smaller than 10−3. Since the error of the Jacobian is
an approximation, the smallest singular value that we accept is 10−2. If errors are
relative instead of absolute, the smallest acceptable singular values are 10−2||R′||2.
The latter condition is equivalent to choosing columns of R′ that form a matrix
with condition number no greater than 102.

Once the number of identifiable parameters has been determined, we find the
most dominant parameters by performing a QR decomposition with column pivoting
on the most dominant right singular vectors computed in step 4. The process
begins by choosing the most sensitive parameter in a way similar but not identical
to the sensitivity analysis of the previous section; the column with largest 2-norm
is chosen. The algorithm chooses additional parameters in a way that keeps the
condition number of the chosen columns small; for more detail see [11] p. 233–36.
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