function result=cda(x,group,varargin) %CDA performs linear and quadratic classical discriminant analysis % on the data matrix x with known group structure. % % Required input arguments: % x : training data set (matrix of size n by p). % group : column vector containing the group numbers of the training % set x. For the group numbers, any strict positive integer is % allowed assuming that the first group is the one with % the smallest group number. % % Optional input arguments: % method : String which indicates whether a 'linear' (default) or 'quadratic' % discriminant rule should be applied % misclassif : String which indicates how to estimate the probability of % misclassification. It can be based on the % training data ('training'), a validation set ('valid'), % or cross-validation ('cv'). Default is 'training'. % membershipprob : Vector which contains the membership probability of each % group (sorted by increasing group number). If no priors are given, they are % estimated as the proportions of observations in the training set. % valid : If misclassif was set to 'valid', this field should contain % the validation set (a matrix of size m by p). % groupvalid : If misclassif was set to 'valid', this field should contain the group numbers % of the validation set (a column vector). % predictset : Contains a new data set (a matrix of size mp by p) from which the % class memberships are unknown and should be predicted. % plots : If equal to 1, one figure is created with the training data and the % tolerance ellipses for each group. This plot is % only available for bivariate data sets. For technical reasons, a maximum % of 6 groups is allowed. Default is one. % % Options for advanced users (input comes from the program RSIMCA.m with option 'classic' = 1): % % weightstrain : The weights for the training data. Corresponds to the flagtrain from RDA. (default = 1) % weightsvalid : The weights for the validation data. Corresponds to the flagvalid from RDA. (default = 1) % I/O: result=cda('plots',0,'misclassif','training','method','linear',... % 'membershipprob',proportions,'valid',y,'groupvalid',groupy); % The user should only give the input arguments that have to change their default value. % The name of the input arguments needs to be followed by their value. % The order of the input arguments is of no importance. % % Examples: out=cda(x,group,'method','linear') % out=cda(x,group,'plots',0) % out=cda(x,group,'valid',y,'groupvalid',groupy) % % The output is a structure containing the following fields: % result.assignedgroup : If there is a validation set, this vector contains the assigned group numbers % for the observations of the validation set. Otherwise it contains the % assigned group numbers of the original observations based on the discriminant rules. % result.scores : If there is a validation set, this column of size m contains the maximal discriminant % scores for each observation from the validation set. Otherwise it is a columnvector of % size n containing the maximal discriminant scores of the training set. % result.method : String containing the method used to obtain % the discriminant rules (either 'linear' or 'quadratic'). This % is the same as the input argument method. % result.cov : If method equals 'linear', this is a matrix containing the % estimated pooled covariance matrix. % If method equals 'quadratic', it is a cell array containing the covariances per group. % result.center : A vector in which the rows contain the estimated centers of the groups. % result.md : A vector of length n containing the mahalanobis distances of each observation from the training set to the % center of its group. % result.flagtrain : Observations from the training set whose mahalanobis distance exceeds a certain cut-off value % can be considered as outliers and receive a flag equal to zero. The regular observations % receive a flag 1. (See also mcdcov.m) % result.flagvalid : Observations from the validation set whose mahalanobis distance (to the center of their group) % exceeds a certain cut-off value can be considered as outliers and receive a % flag equal to zero. The regular observations receive a flag 1. % If there is no validation set, this field is equal to zero. % result.grouppredict : If there is a prediction set, this vector contains the assigned group numbers % for the observations of the prediction set. % result.flagpredict : Observations from the new data set (predict) whose robust distance (to the center of their group) % exceeds a certain cut-off value can be considered as overall outliers and receive a % flag equal to zero. The regular observations receive a flag 1. % If there is no prediction set, this field is % equal to zero. % result.membershipprob : A vector with the membership probabilities. % result.misclassif : String containing the method used to estimate the misclassification probabilities % (same as the input argument misclassif) % result.groupmisclasprob : A vector containing the misclassification % probabilities for each group. % result.avemisclasprob : Overall probability of misclassification (weighted average of the misclassification % probabilities over all groups). % result.class : 'CDA' % result.classic : Is equal to 0 since this analysis is a classical analysis. % result.x : The training data set (same as the input argument x). % result.group : The group numbers of the training set (same as the input argument group). % % This function is part of LIBRA: the Matlab Library for Robust Analysis, % available at: % http://wis.kuleuven.be/stat/robust.html % % Written by Nele Smets on 02/02/2004 % Last Update: 01/07/2005 % if nargin<2 error('There are too few input arguments.') end %assigning default-values [n,p]=size(x); if size(group,1)~=1 group=group'; end if n ~= length(group) error('The number of observations is not the same as the length of the group vector!') end g=group; countsorig=tabulate(g); %contingency table (outputmatrix with 3 colums: value - number - percentage) [lev,levi,levj]=unique(g); %Redefining the group number if any(lev~= (1:length(lev))) lev=1:length(lev); g=lev(levj); counts=tabulate(g); else counts=countsorig; end if ~all(counts(:,2)) %some groups have zero values, omit those groups disp(['Warning: group(s) ', num2str(counts(counts(:,2)==0,1)'), 'are empty.']); empty=counts(counts(:,2)==0,:); counts=counts(counts(:,2)~=0,:); else empty=[]; end if any(counts(:,2)<5)%some groups have less than 5 observations error(['Group(s) ', num2str(counts(counts(:,2)<5,1)'), ' have less than 5 observations.']); end proportions=zeros(size(counts,1),1); y=0; %initial values of the validation data set and its groupsvector groupy=0; counter=1; weightstrain = ones(1,n); weightsvalid = 0; default=struct('plots',1,'misclassif','training','method','linear','membershipprob',proportions,... 'valid',y,'groupvalid',groupy,'weightstrain',weightstrain,'weightsvalid',weightsvalid,'predictset',[]); list=fieldnames(default); options=default; IN=length(list); i=1; %reading the user's input if nargin>2 % %placing inputfields in array of strings % for j=1:nargin-2 if rem(j,2)~=0 chklist{i}=varargin{j}; i=i+1; end end % %Checking which default parameters have to be changed % and keep them in the structure 'options'. % while counter<=IN index=strmatch(list(counter,:),chklist,'exact'); if ~isempty(index) %in case of similarity for j=1:nargin-2 %searching the index of the accompanying field if rem(j,2)~=0 %fieldnames are placed on odd index if strcmp(chklist{index},varargin{j}) I=j; end end end options=setfield(options,chklist{index},varargin{I+1}); index=[]; end counter=counter+1; end end %Checking prior (>0 ) prior=options.membershipprob; if size(prior,1)~=1 prior=prior'; end if sum(prior) ~= 0 epsilon=10^-4; if (any(prior < 0) | (abs(sum(prior)-1)) > epsilon) error('Invalid membership probabilities.') end end ng=length(proportions); if length(prior)~=ng error('The number of membership probabilities is not the same as the number of groups.') end %%%%%%%%%%%%%%%%%%MAIN FUNCTION %%%%%%%%%%%%%%%%%%%%% %Checking if a validation set is given if strmatch(options.misclassif, 'valid','exact') if options.valid==0 error(['The misclassification error will be estimated through a validation set',... 'but no validation set is given!']) else validx = options.valid; validgrouping = options.groupvalid; if size(validx,1)~=length(validgrouping) error('The number of observations in the validation set is not the same as the length of its group vector!') end if size(validgrouping,1)~=1 validgrouping = validgrouping'; end countsvalidorig=tabulate(validgrouping); countsvalid=countsvalidorig(countsvalidorig(:,2)~=0,:); if size(countsvalid,1)==1 error('The validation set must contain observations from more than one group!') elseif any(ismember(empty,countsvalid(:,1))) error(['Group(s)' , num2str(empty(ismember(empty,countsvalid(:,1)))), 'was/were empty in the original dataset.']) end if (length(options.weightsvalid) == 1) | (length(options.weightsvalid)~=size(validx,1)) options.weightsvalid = ones(size(validx,1),1); end end elseif options.valid~=0 validx = options.valid; validgrouping = options.groupvalid; if size(validx,1) ~= length(validgrouping) error('The number of observations in the validation set is not the same as the length of its group vector!') end if size(validgrouping,1)~=1 validgrouping = validgrouping'; end options.misclassif='valid'; countsvalidorig=tabulate(validgrouping); countsvalid=countsvalidorig(countsvalidorig(:,2)~=0,:); if size(countsvalid,1)==1 error('The validation set must contain more than one group!') elseif any(ismember(empty,countsvalid(:,1))) error(['Group(s)' , num2str(empty(ismember(empty,countsvalid(:,1)))), 'was/were empty in the original dataset.']) end if (length(options.weightsvalid) == 1) | (length(options.weightsvalid)~=size(validx,1)) options.weightsvalid = ones(size(validx,1),1); end end %Discriminant rule based on the training set x result1 = rawrule(x, g,prior, options.method); %Discriminant rule based on reweighted results if strmatch(options.misclassif,'valid','exact') result2 = rewrule(validx, result1); finalgroup = result2.class; else result2 = rewrule(x, result1); finalgroup = result2.class; end %Apply discriminant rule on validation set switch options.misclassif case 'valid' [v,vi,vj]=unique(validgrouping); %Redefining the group number if any(v~= (1:length(v))) v=1:length(v); validgrouping=v(vj); elseif size(validgrouping,1)~=1 validgrouping=validgrouping'; end if any(countsvalidorig(:,2)==0) empty=setdiff(countsvalidorig(find(countsvalidorig(:,2)==0),1), countsorig(find(countsorig(:,2)==0))); disp(['Warning: the test group(s) ' , num2str(empty'), ' are empty']); else empty=[]; end misclas=-ones(1,length(lev)); for i=1:size(validx,1) if strmatch(options.method,'quadratic','exact') dist(i) = libra_mahalanobis(validx(i,:), result1.center(vj(i),:),'invcov',result1.invcov{vj(i)}); else dist(i) = libra_mahalanobis(validx(i, :), result1.center(vj(i),:),'invcov',result1.invcov); end end weightsvalid=zeros(1,length(dist)); weightsvalid(dist <= chi2inv(0.975, p))=1; for i=1:length(v) if ~isempty(intersect(i,v)) misclas(i)=sum((validgrouping(options.weightsvalid == 1)==finalgroup(options.weightsvalid == 1)')... & (validgrouping(options.weightsvalid == 1)==repmat(lev(i),1,sum(options.weightsvalid)))); ingroup(i) = sum((validgrouping(options.weightsvalid == 1) == repmat(lev(i), 1,sum(options.weightsvalid)))); misclas(i) = (1 - (misclas(i)./ingroup(i))); end end if any(misclas==-1) misclas(misclas==-1)=0; end misclasprobpergroup=misclas; misclas=misclas.*result1.prior; misclasprob=sum(misclas); case 'training' for i=1:ng misclas(i) = sum((g(options.weightstrain==1)==finalgroup(options.weightstrain==1)')... &(g(options.weightstrain==1)==repmat(lev(i),1,sum(options.weightstrain)))); ingroup(i) = sum((g(options.weightstrain==1) == repmat(lev(i),1,sum(options.weightstrain)))); end misclas = (1 - (misclas./ingroup)); misclasprobpergroup = misclas; misclas = misclas.*result1.prior; misclasprob = sum(misclas); weightsvalid=0;%only available with validation set case 'cv' finalgroup=[]; for i=1:length(x) xnew=removal(x,i,0); groupnew=removal(group,0,i); functie1res = rawrule(xnew, groupnew,prior, options.method); functie2res = rewrule(x(i, :), functie1res); finalgroup = [finalgroup; functie2res.class(1)]; end for i=1:ng misclas(i) = sum((g(options.weightstrain==1) == finalgroup(options.weightstrain==1)')... & (g(options.weightstrain==1) == repmat(lev(i),1,sum(options.weightstrain)))); ingroup(i) = sum(g(options.weightstrain==1) == repmat(lev(i),1,sum(options.weightstrain))); end misclas = (1 - (misclas./ingroup)); misclasprobpergroup= misclas; misclas = misclas.* result1.prior; misclasprob = sum(misclas); weightsvalid=0; %only available with validation set end %classify the new observations (predict) if ~isempty(options.predictset) resultpredict = rewrule(options.predictset, result1); finalgrouppredict = resultpredict.class; for i=1:size(options.predictset,1) for j = 1:ng if strmatch(options.method,'quadratic','exact') distpredict(i,j) = libra_mahalanobis(options.predictset(i,:), result1.center(j,:),'invcov',result1.invcov{j}); else distpredict(i,j) = libra_mahalanobis(options.predictset(i, :), result1.center(j,:),'invcov',result1.invcov); end end end weightspredict = zeros(1,size(distpredict,1)); weightspredict(min(distpredict,[],2) <= chi2inv(0.975, p))=1; else finalgrouppredict = 0; weightspredict = 0; end %Output structure result=struct('assignedgroup',{finalgroup'},'scores',{result2.scores'},'method',{result2.method},... 'cov',{result1.cov},'center',{result1.center},'md',{result1.mahal'}, 'flagtrain',{result1.flag'},... 'flagvalid',{weightsvalid},'grouppredict',finalgrouppredict,'flagpredict',weightspredict','membershipprob',{result1.prior},... 'misclassif',{options.misclassif},'groupmisclasprob',{misclasprobpergroup},... 'avemisclasprob',{misclasprob},'class',{'CDA'},'x',{x},'group',{group}); if size(x,2)~=2 result=rmfield(result,{'x','group'}); end %Plotting the output try if options.plots makeplot(result); end catch %output must be given even if plots are interrupted %> delete(gcf) to get rid of the menu end %-------------------------------------------------------------------------- function result=rawrule(x, grouping,prior, method) %calculate the discrimination rule based on the training set x. [n,p]=size(x); g=grouping; epsilon=10^-4; [gun,gi,gj]=unique(g); ng=length(gun); switch method case 'linear' %equal covariances supposed wsum=0; for j=1:length(gun) group.cov{j}=cov(x(g==gun(j),:)); wsum=wsum+sum(g==gun(j))*group.cov{j}; group.center(j,:)=mean(x(g==gun(j),:)); %center of all groups, matrix of ng x p end covar=wsum/n; for i=1:n zgeg(i,:)=x(i,:)-group.center(gj(i),:); end dist=zeros(n,1); for j=1:length(gun) dist(g==gun(j))=libra_mahalanobis(x(g==gun(j),:),group.center(j,:),'invcov',inv(cov(zgeg))); end weights=zeros(n,1); weights(dist <= chi2inv(0.975,p))=1; result.cov=covar; %over all group result.invcov=inv(covar); result.flag=weights; result.mahal=dist; result.center=group.center; %all groups result.method=method; case 'quadratic' for j=1:length(gun) group.cov{j}=cov(x(g==gun(j),:)); %covariance of group j group.invcov{j}=inv(group.cov{j}); group.center(j,:)=mean(x(g==gun(j),:)); %center of all groups end for i=1:n xdist(i)=libra_mahalanobis(x(i,:), group.center(gj(i),:), 'invcov',group.invcov{gj(i)}); end weights=zeros(n,1); weights(xdist <= chi2inv(0.975,p))=1; result.cov=group.cov; %per group result.invcov=group.invcov; result.center = group.center; %all groups result.mahal = xdist'; result.flag = weights; result.method = method; end if sum(prior) == 0 counts = tabulate(g); if ~any(counts(:,2)) disp(['Warning: the group(s) ', num2str(counts(counts(:,2) == 0,1)'), 'contain only outliers']); counts=counts(counts(:,2)~=0,:); end result.prior = (counts(:,3)/100)'; else result.prior = prior; end %-------------------------------------------------------------------------- function result=rewrule(x, rawobject) epsilon=10^-4; center=rawobject.center; covar=rawobject.cov; invcov=rawobject.invcov; prior=rawobject.prior; method=rawobject.method; if (length(prior) == 0 | length(prior) ~= size(center,1)) error('invalid prior') end if sum(prior)~=0 if (any(prior < 0) | (abs(sum(prior)-1)) > epsilon) error('invalid prior') end end ngroup=length(prior); [n,p]=size(x); switch method case 'linear' for j=1:ngroup for i=1:n scores(i,j) = linclassification(x(i,:)', center(j,:)', invcov, prior(j)); end end [maxs,maxsI] = max(scores,[],2); for i=1:n maxscore(i,1) = scores(i,maxsI(i)); end result.scores = maxscore; result.class = maxsI; result.method = method; case 'quadratic' for j=1:ngroup for i=1:n scores(i, j) = classification(x(i,:)', center(j,:)', covar{j}, invcov{j}, prior(j)); end end [maxs,maxsI] = max(scores,[],2); for i=1:n maxscore(i,1) = scores(i,maxsI(i)); end result.scores = maxscore; result.class = maxsI; result.method = method; end %--------------make sure the inputvariables are columnvectors! function out=classification(x, center, covar,invcov, priorprob) out=-0.5*log(abs(det(covar)))-0.5*(x - center)' * invcov *(x - center)+log(priorprob); %------------------- function out=linclassification(x, center, invcov, priorprob) out=center'*invcov* x - 0.5*center'*invcov*center+log(priorprob);