classdef ECGtask_classification_features_calc < ECGtask % ECGtask for ECGwrapper (for Matlab) % --------------------------------- % % Description: % % Abstract class for defining ECGtask interface % % % Author: Mariano Llamedo Soria (llamedom at {electron.frba.utn.edu.ar; unizar.es} % Version: 0.1 beta % Birthdate : 18/2/2013 % Last update: 18/2/2013 properties(GetAccess = public, Constant) name = 'ECG_hb_class_fc'; target_units = 'ADCu'; doPayload = true; % if user = memory; % memory_constant is the fraction respect to user.MaxPossibleArrayBytes % which determines the maximum input data size. end properties(GetAccess = public, SetAccess = private) true_labels memory_constant = 0.4; started = false; end properties( Access = private, Constant) sampling_rate = 360; %Hz fnPayload = {'featMat_clust' 'featMat_ldc' }; % fnPayload = {'featMat_clust' 'featMat_ldc' 'ECG' 'QRS_locations' 'RR_intervals'}; fnFMfile = {'featMat_clust' 'featMat_ldc'}; SmallValue = 0.0001; end properties( Access = private) delayLP q_filters LP LPsize scale_idx scales series cant_QRS_locations end properties progress_handle class_labeling autovec user_string tmp_path end methods function obj = ECGclassificationTask(obj) % not implemented end function Start(obj, ECG_header, ECG_annotations) % the dimension of the input block should be affected for the % internal sampling rate, since a resampling is performed % internally. obj.memory_constant = obj.memory_constant * ECG_header.freq / 360; %% Calculate accesories signals %load low-pass preprocessing filter. load( ['LP Fs ' num2str(obj.sampling_rate) 'Hz - Fc 35Hz - 80db stop.mat' ]); obj.LPsize = length(LP.numerator); obj.delayLP = round((obj.LPsize-1)/2); obj.LP = LP; % Wavelet transform filter bank design obj.scales = 3:6; CantScales = length(obj.scales); MaxScales = max(obj.scales); obj.scale_idx= nan(MaxScales,1); filters_cache_filename = ['wt_filters_' num2str(obj.scales) ' scales_' num2str(obj.sampling_rate) ' Hz.mat' ]; if( exist(filters_cache_filename, 'file') ) aux = load( filters_cache_filename ); obj.q_filters = aux.q_filters; else obj.q_filters = qs_filter_design(obj.scales, obj.sampling_rate); end for ii = 1:CantScales %indice para saber que escala corresponde a cada columna de MyWavelets obj.scale_idx(obj.scales(ii)) = ii; end if( isfield( ECG_annotations, 'anntyp')) obj.true_labels = ECG_annotations.anntyp; end QRS_locations = ECG_annotations.time; % RR interval sequence RR_intervals = diff(QRS_locations, 1); RR_intervals = colvec([ RR_intervals(1); RR_intervals ]); dRR_intervals = diff(RR_intervals, 1); dRR_intervals = colvec([ dRR_intervals(2); dRR_intervals(2); dRR_intervals(2:end) ]); % interval resampling. obj.series.RR_intervals = round(RR_intervals * obj.sampling_rate / ECG_header.freq); obj.series.dRR_intervals = round(dRR_intervals * obj.sampling_rate / ECG_header.freq); obj.series.QRS_locations = QRS_locations; obj.cant_QRS_locations = length(obj.series.RR_intervals); obj.started = true; end function payload = Process(obj, ECG, ECG_start_offset, ECG_sample_start_end_idx, ECG_header, ECG_annotations, ECG_annotations_start_end_idx ) payload = []; %refered to the whole ECG recording this_iter_QRS_idx = ECG_annotations_start_end_idx(1):ECG_annotations_start_end_idx(2); RR_intervals = obj.series.RR_intervals(this_iter_QRS_idx); %refered to this ECG strip QRS_locations = ECG_annotations.time; %% Preprocessing % Update point obj.progress_handle.checkpoint('Resampling'); %resample to obj.sampling_rate Hz wtECG = int16(round(resample(double(ECG), obj.sampling_rate, ECG_header.freq))); clear ECG QRS_locations = colvec(round(QRS_locations * obj.sampling_rate / ECG_header.freq)); % this_iter_true_labels = true_labels(this_iter_QRS_idx); this_iter_ECG_resampled_size = size(wtECG,1); if( ECG_header.nsig > 2 ) %multilead approach. % project ECG and wtECG to obtain PCA components wtECG = int16(round(double(wtECG) * obj.autovec(:,1:2))); % wtECG = cellfun(@(a)( a * obj.autovec(:,1:2) ), mat2cell(wtECG, this_iter_ECG_resampled_size, obj.ECG_header.nsig, ones(1,CantScales) ), 'UniformOutput', false); % wtECG = cell2mat(wtECG); end % Update point obj.progress_handle.checkpoint('Filtering'); %Low pass filtering @ 35Hz => ECG recovery wtECG = int16(round(filter(obj.LP, double(wtECG)))); %delay compensation. wtECG = [ int16(zeros(obj.delayLP, size(wtECG,2) )) ;wtECG(obj.LPsize:end,:) ; int16(zeros(obj.delayLP, size(wtECG,2)))]; %Quito la linea de base. % ECG = BaselineWanderRemovalMedian( ECG, obj.sampling_rate); wtECG = int16(round(BaselineWanderRemovalSplines( double(wtECG), QRS_locations, obj.sampling_rate))); % Update point obj.progress_handle.checkpoint('Wavelet transform calculation'); wtECG = int16(round(qs_wt(double(wtECG), obj.scales, obj.sampling_rate, obj.q_filters))); %% Features Calculation % Update point obj.progress_handle.checkpoint('RRi calculation'); this_iter_cant_QRS = length(QRS_locations); this_iter_seq_idx = 1:this_iter_cant_QRS; % log(RRactual) %%%%%%%%%%%%%%% featMat_ldc = log(colvec(RR_intervals)/obj.sampling_rate); obj.progress_handle.checkpoint('RRi+1 calculation'); % log(RRpost) %%%%%%%%%%%%%%% featMat_ldc = [ featMat_ldc log(colvec(obj.series.RR_intervals(min(obj.cant_QRS_locations, this_iter_QRS_idx+1)))/obj.sampling_rate)]; % Update point obj.progress_handle.checkpoint('RRmean1 calculation'); % log(RRmean1) %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)( findStartEnd( obj.series.QRS_locations >= (obj.series.QRS_locations(a) - 1*60*obj.sampling_rate) & ... obj.series.QRS_locations <= obj.series.QRS_locations(a) )), ... this_iter_QRS_idx, 'UniformOutput', false); aux_featval = cellfun(@(a)(mean(obj.series.RR_intervals(a(1):a(2)))/obj.sampling_rate), aux_idx); featMat_ldc = [ featMat_ldc colvec(log(aux_featval)) ]; % Update point obj.progress_handle.checkpoint('RRmean20 calculation'); % log(RRmean20) %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)( findStartEnd( obj.series.RR_intervals >= (obj.series.RR_intervals(a) - 20*60*obj.sampling_rate) & ... obj.series.RR_intervals <= obj.series.RR_intervals(a) )), ... this_iter_QRS_idx, 'UniformOutput', false); aux_featval = cellfun(@(a)(mean(obj.series.RR_intervals(a(1):a(2)))/obj.sampling_rate), aux_idx); featMat_ldc = [ featMat_ldc colvec(log(aux_featval)) ]; % Update point obj.progress_handle.checkpoint('AC1 calculation'); % AutoCorr1PlanoWTZeroCross %%%%%%%%%%%%%%% % AutoCorr1PlanoWTModMaxPos %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)( [ max(1, QRS_locations(a) - round(0.08*obj.sampling_rate)) ... min(this_iter_ECG_resampled_size, QRS_locations(a) + round(0.08*obj.sampling_rate)) ]) , ... this_iter_seq_idx , 'UniformOutput', false); %calculate PCA matrix in this slices for feature %AutoCorr1PlanoWTModMaxPos aux_idx2 = arrayfun(@(a)( [ max(1, QRS_locations(a) - round(0.13*obj.sampling_rate)) ... min(this_iter_ECG_resampled_size, QRS_locations(a) + round(0.2*obj.sampling_rate)) ]) , ... this_iter_seq_idx, 'UniformOutput', false); aux_featval = cellfun(@(a,b)(double(squeeze(wtECG(b(1):b(2),:,obj.scale_idx(4)))) * autovec_calculation(double(squeeze(wtECG(a(1):a(2),:,obj.scale_idx(4))))) ), aux_idx, aux_idx2, 'UniformOutput', false); [ aux_mp aux_zc ] = cellfun(@(a)(CalcModMaxPos(a(:,1))), aux_featval ); featMat_ldc = [ featMat_ldc colvec(aux_zc) colvec(aux_mp) ]; % Update point obj.progress_handle.checkpoint('AC2 calculation'); % AutoCorr2PlanoWTZeroCross %%%%%%%%%%%%%%% % AutoCorr2PlanoWTModMaxPos %%%%%%%%%%%%%%% [ aux_mp aux_zc ] = cellfun(@(a)(CalcModMaxPos(a(:,2))), aux_featval ); featMat_ldc = [ featMat_ldc colvec(aux_zc) colvec(aux_mp) ]; % Update point obj.progress_handle.checkpoint('RRi replication'); %calculate clustering features. % log(RRactual) %%%%%%%%%%%%%%% featMat_clust = featMat_ldc(:,1); % Update point obj.progress_handle.checkpoint('RRi-1 calculation'); % log(RRant) %%%%%%%%%%%%%%% featMat_clust = [ featMat_clust log(colvec(obj.series.RR_intervals(max(1, this_iter_QRS_idx-1)))/obj.sampling_rate)]; % Update point obj.progress_handle.checkpoint('RRp calculation'); % log(Prematuridad_loc) %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)(max(1,a-1):min(obj.cant_QRS_locations,a+1)), this_iter_QRS_idx, 'UniformOutput', false); %tengo que contemplar los casos extremos if( length(aux_idx{1}) < 3 ) aux_idx{1} = [1 aux_idx{1}]; end if( length(aux_idx{end}) < 3 ) aux_idx{end} = [aux_idx{end} obj.cant_QRS_locations]; end aux_featval = cellfun(@(a)( obj.series.RR_intervals(a(2))/sum(obj.series.RR_intervals(a)) ), aux_idx); featMat_clust = [ featMat_clust colvec(log(aux_featval)) ]; % Update point obj.progress_handle.checkpoint('RRlv calculation'); % log(AbsRRlocalVar) %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)(max(1,a-1):min(obj.cant_QRS_locations,a+1)), this_iter_QRS_idx, 'UniformOutput', false); if( length(aux_idx{1}) < 3 ) aux_idx{1} = [1 aux_idx{1}]; end if( length(aux_idx{end}) < 3 ) aux_idx{end} = [aux_idx{end} obj.cant_QRS_locations]; end aux_featval = cellfun(@(a)(obj.SmallValue+sum(abs(obj.series.dRR_intervals(a)))/obj.sampling_rate), aux_idx); featMat_clust = [ featMat_clust colvec(log(aux_featval)) ]; % Update point obj.progress_handle.checkpoint('RRmean20 replication'); % log(RRmean20) %%%%%%%%%%%%%%% featMat_clust = [ featMat_clust featMat_ldc(:,4) ]; % Update point obj.progress_handle.checkpoint('QRSscale calculation'); % log(QRS_max_scale_proj12) %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)( [ max(1, QRS_locations(a) - round(0.08*obj.sampling_rate)) ... min(this_iter_ECG_resampled_size, QRS_locations(a) + round(0.08*obj.sampling_rate)) ]) , ... this_iter_seq_idx, 'UniformOutput', false); aux_featval = cellfun(@(a)( Calc_QRS_max_scale_proj( double(wtECG(a(1):a(2),:,:)), obj.scales) ), aux_idx); % iAreaAbs = squeeze(sum(abs(wtAux)))'; % MaxProjArea = scales * iAreaAbs ./ sum(iAreaAbs); featMat_clust = [ featMat_clust colvec(log(aux_featval)) ]; % Update point obj.progress_handle.checkpoint('AC1 replication'); % AutoCorr1PlanoWTModMaxPos %%%%%%%%%%%%%%% featMat_clust = [ featMat_clust featMat_ldc(:,6) ]; % Update point obj.progress_handle.checkpoint('CC calculation'); % CrossCorr_QRST_ModMaxVal13 %%%%%%%%%%%%%%% aux_idx = arrayfun(@(a)( [max(1, QRS_locations(a) - round(0.13*obj.sampling_rate)) ... min( [ this_iter_ECG_resampled_size, ... QRS_locations(a) + round(0.4*obj.sampling_rate), ... QRS_locations(a) + RR_intervals(a) - round(0.13*obj.sampling_rate) ] ) ]), ... this_iter_seq_idx, 'UniformOutput', false); if( ECG_header.nsig > 2 ) % wtECG already projected in autovec. aux_featval = cellfun(@(a)( CalcModMaxVal( double(squeeze(wtECG(a(1):a(2),:,obj.scale_idx(3)))) ) ), aux_idx); else aux_featval = cellfun(@(a)( CalcModMaxVal( double(squeeze(wtECG(a(1):a(2),:,obj.scale_idx(3)))) * obj.autovec ) ), aux_idx); end featMat_clust = [ featMat_clust colvec(aux_featval) ]; %save ECG for user interface and cluster analysis for ii = 1:length(obj.fnPayload) payload.(obj.fnPayload{ii}) = eval(obj.fnPayload{ii}); end end function payload = Finish(obj, payload, ECG_header) % not implemented end function plA = Concatenate(obj, plA, plB) if( isempty(plA) ) for ii = 1:length(obj.fnFMfile) plA.(obj.fnFMfile{ii}) = plB.(obj.fnFMfile{ii}); end else for ii = 1:length(obj.fnFMfile) plA.(obj.fnFMfile{ii}) = [plA.(obj.fnFMfile{ii}); plB.(obj.fnFMfile{ii})]; end end end end methods ( Access = private ) end end %%%%%%%%%%%%%%%%%% % Other functions %%%%%%%%%%%%%%%%%% function autovec = autovec_calculation(wtECGslice) mean_wtECGslice = mean(wtECGslice); wtECGslice_cov = cov( bsxfun( @minus, wtECGslice, mean_wtECGslice )); [autovec autoval] = eig(wtECGslice_cov); [~, autoval_idx] = sort(diag(autoval), 'descend'); autovec = autovec(:,autoval_idx); end function [ ModMaxPos ZeroCross ] = CalcModMaxPos( wtSignal ) ModMaxPos = nan; ZeroCross = nan; lwtSignal = size(wtSignal, 1); if( all( wtSignal == 0 ) ) return end ac1 = conv(wtSignal(:,1), flipud(wtSignal(:,1))); ac1 = ac1(lwtSignal:end); ac1 = 1/ac1(1)*ac1; interp_idx = (1:0.1:lwtSignal)'; ac1_interp = spline( 1:lwtSignal, ac1, interp_idx ); iZeroCrossPos_ac1 = myzerocros(ac1); if( isempty(iZeroCrossPos_ac1)) return else if( iZeroCrossPos_ac1(1) < lwtSignal ) if( sign(ac1(iZeroCrossPos_ac1(1))) ~= sign(ac1(iZeroCrossPos_ac1(1)+1)) ) ZeroCross = iZeroCrossPos_ac1(1) - ac1(iZeroCrossPos_ac1(1)) / ( ac1(iZeroCrossPos_ac1(1)+1) - ac1(iZeroCrossPos_ac1(1)) ); else ZeroCross = (iZeroCrossPos_ac1(1)-1) - ac1(iZeroCrossPos_ac1(1)-1) / ( ac1(iZeroCrossPos_ac1(1)) - ac1(iZeroCrossPos_ac1(1)-1) ); end else return end end ModMaxPos_ac1 = modmax( ac1_interp, 2, 0, 0 ); if( ~isempty(ModMaxPos_ac1) ) valid_ac1_max_idx = find(interp_idx(ModMaxPos_ac1) > ZeroCross); if( ~isempty(valid_ac1_max_idx) ) ModMaxPos = interp_idx(ModMaxPos_ac1(valid_ac1_max_idx(1))); else return end else return end end function ModMaxVal = CalcModMaxVal( wtSignal ) % std_wtSignal = std(wtSignal); % wtSignal = bsxfun( @times, wtSignal, 1./std_wtSignal); cc = conv(wtSignal(:,1), flipud(wtSignal(:,2))); [~, max_pos] = max(abs(cc)); ModMaxVal = cc(max_pos); end function start_end_aux = findStartEnd( bAux ) start_aux = find( bAux, 1, 'first' ); end_aux = find( bAux, 1, 'last' ); start_end_aux = [start_aux end_aux]; end function aux_slice = Calc_QRS_max_scale_proj(aux_slice, scales) aux_slice = squeeze(sum(abs(aux_slice(:,1,:))))'; aux_slice = scales * colvec(aux_slice) ./ sum(aux_slice); end