function [B, ll] = drbmc(varargin) %DRBMC Trainable classifier by Discriminative Restricted Boltzmann Machine % % W = DRBMC(A,N,L) % W = A*DRBMC([],N,L) % W = A*DRBMC(N,L) % % INPUT % A Dataset % N Number of hidden units % L Regularization parameter (L2) % % OUTPUT % W Discriminative Restricted Boltzmann Machine classifier % % DESCRIPTION % The classifier trains a discriminative Restricted Boltzmann Machine (RBM) % on dataset A. The discriminative RBM can be viewed as a logistic % regressor with hidden units. The discriminative RBM has N hidden units % (default = 5). It is trained with L2 regularization using regularization % parameter L (default = 0). % % New objects are classified in the same way as in a logistic regressor, % using a softmax function over the labels. % % REFERENCE % H. Larochelle and Y. Bengio. Classification using Discriminative Restricted % Boltzmann Machines. Proceedings of the 25th International Conference on % Machine Learning (ICML), pages 536?543, 2008. % % SEE ALSO (PRTools Guide) % DATASETS, MAPPINGS, LOGLC % (C) Laurens van der Maaten, 2010 % University of California, San Diego % 28 Jan 2013, debugged, default N = 5, PRTools call tests name = 'Discr. RBM'; argin = shiftargin(varargin,'scalar'); argin = setdefaults(argin,[],5,0,1e-3); % Handle untrained calls like W = drbmc([]); if mapping_task(argin,'definition') B = define_mapping(argin,'untrained',name); %B = prmapping(mfilename); %B = setname(B, name); return; % Handle training on dataset A (use A * drbmc, A * drbmc([]), and drbmc(A)) elseif mapping_task(argin,'training') [A,W,L,I] = deal(argin{:}); if ~isa(L, 'double') error('Illegal call'); end if ~isa(I, 'double') error('Illegal call'); end islabtype(A, 'crisp'); isvaldfile(A, 1, 2); A = testdatasize(A, 'features'); A = setprior(A, getprior(A)); [m, k, c] = getsize(A); % Normalize data and add extra feature train_X = +A; data.min_X = min(train_X(:)); train_X = train_X - data.min_X; data.max_X = max(train_X(:)); train_X = train_X / data.max_X; train_X = (train_X * 2) - 1; data.max_radius = max(sum(train_X .^ 2, 2)); train_X = [train_X sqrt(data.max_radius - sum(train_X .^ 2, 2))]; % Train the dRBM [data.machine, ll] = train_drbm(train_X, getnlab(A), W, 100, L, I); B = prmapping(mfilename, 'trained', data, getlablist(A), k, c); B = setname(B, name); % Handle evaluation of a trained dRBM W for a dataset A elseif mapping_task(argin,'execution') [A,W] = deal(argin{1:2}); % Normalize data and add extra feature test_X = +A; test_X = test_X - W.data.min_X; test_X = test_X / W.data.max_X; test_X = (test_X * 2) - 1; test_X = [test_X sqrt(W.data.max_radius - sum(test_X .^ 2, 2))]; % Evaluate dRBM [test_labels, test_post] = predict_ff(W.data.machine, test_X, length(W.labels)); A = prdataset(A); B = setdata(A, real(test_post), getlabels(W)); ll = []; % This should not happen else error('Illegal call'); end end function [machine, ll] = train_drbm(X, labels, h, max_iter, weight_cost, variance) %TRAIN_DRBM Trains a discrimative RBM using gradient descent % % machine = train_drbm(X, labels, h, max_iter, weight_cost, variance) % % Trains a discriminative Restricted Boltzmann Machine on dataset X. The RBM % has h hidden nodes (default = 100). The training is performed by means of % the gradient descent. The visible and hidden units are binary stochastic, % whereas the label layer has softmax units. The maximum number of % iterations can be specified through max_iter (default = 30). % The trained RBM is returned in the machine struct. % % % (C) Laurens van der Maaten % University of California San Diego, 2010 % Process inputs if ischar(X) load(X); end if ~exist('h', 'var') || isempty(h) h = 100; end if ~exist('max_iter', 'var') || isempty(max_iter) max_iter = 15; end if ~exist('weight_cost', 'var') || isempty(weight_cost) weight_cost = 0; end % Randomly permute data ind = randperm(size(X, 1)); X = X(ind,:); labels = labels(ind); % Convert labels to binary matrix no_labels = length(unique(labels)); label_matrix = zeros(length(labels), no_labels); label_matrix(sub2ind(size(label_matrix), (1:length(labels))', labels)) = 1; % Initialize some variables [n, v] = size(X); machine.W = randn(v, h) * variance; machine.labW = randn(no_labels, h) * variance; machine.bias_upW = zeros(1, h); machine.bias_labW = zeros(1, no_labels); % Main loop for iter=1:max_iter % Encode current solution x = [machine.W(:); machine.labW(:); machine.bias_upW(:); machine.bias_labW(:)]; % Run conjugate gradients using five linesearches % checkgrad('drbm_grad', x, 1e-7, machine, cur_X, cur_lab, cur_labmat, weight_cost) x = minimize(x, 'drbm_grad', 9, machine, X, labels, label_matrix, weight_cost); % Process the updated solution ii = 1; machine.W = reshape(x(ii:ii - 1 + numel(machine.W)), size(machine.W)); ii = ii + numel(machine.W); machine.labW = reshape(x(ii:ii - 1 + numel(machine.labW)), size(machine.labW)); ii = ii + numel(machine.labW); machine.bias_upW = reshape(x(ii:ii - 1 + numel(machine.bias_upW)), size(machine.bias_upW)); ii = ii + numel(machine.bias_upW); machine.bias_labW = reshape(x(ii:ii - 1 + numel(machine.bias_labW)), size(machine.bias_labW)); end machine.type = 'drbm'; ll = drbm_grad(x, machine, X, labels, label_matrix, weight_cost); end function [test_labels, test_post] = predict_ff(machine, test_X, no_labels) %PREDICT_FF Perform label predictions in a feed-forward neural network % % [test_labels, test_post] = predict_ff(network, test_X, no_labels) % % The function performs label prediction in the feed-forward neural net % specified in network (trained using TRAIN_DBN) on dataset test_X. The % predicted labels are returned in test_labels. The class posterior is % returned in test_post. % % % (C) Laurens van der Maaten % University of California San Diego, 2010 % Precompute W dot X + bias Wx = bsxfun(@plus, test_X * machine.W, machine.bias_upW); % Loop over all labels to compute p(y|x) n = size(test_X, 1); energy = zeros(n, size(machine.labW, 2), no_labels); label_logpost = zeros(n, no_labels); for i=1:no_labels % Clamp current label lab = zeros(1, no_labels); lab(i) = 1; % Compute log-posterior probability for current class energy(:,:,i) = bsxfun(@plus, lab * machine.labW, Wx); label_logpost(:,i) = machine.bias_labW(i) + sum(log(1 + exp(energy(:,:,i))), 2); end test_post = exp(bsxfun(@minus, label_logpost, max(label_logpost, [], 2))); test_post = bsxfun(@rdivide, test_post, sum(test_post, 2)); [foo, test_labels] = max(test_post, [], 2); end function [C, dC] = drbm_grad(x, machine, X, labels, label_matrix, weight_cost) %DRBM_GRAD Computes gradient for training a discriminative RBM % % [C, dC] = drbm_grad(x, machine, X, labels, label_matrix) % % Computes gradient for training a discriminative RBM. % % % (C) Laurens van der Maaten % University of California San Diego, 2010 % Decode the current solution if ~isempty(x) ii = 1; machine.W = reshape(x(ii:ii - 1 + numel(machine.W)), size(machine.W)); ii = ii + numel(machine.W); machine.labW = reshape(x(ii:ii - 1 + numel(machine.labW)), size(machine.labW)); ii = ii + numel(machine.labW); machine.bias_upW = reshape(x(ii:ii - 1 + numel(machine.bias_upW)), size(machine.bias_upW)); ii = ii + numel(machine.bias_upW); machine.bias_labW = reshape(x(ii:ii - 1 + numel(machine.bias_labW)), size(machine.bias_labW)); end no_labels = size(label_matrix, 2); n = size(X, 1); % Precompute W dot X + bias Wx = bsxfun(@plus, X * machine.W, machine.bias_upW); % Loop over all labels to compute p(y|x) energy = zeros(n, size(machine.labW, 2), no_labels); label_logpost = zeros(n, no_labels); for i=1:no_labels % Clamp current label lab = zeros(1, no_labels); lab(i) = 1; % Compute log-posterior probability for current class energy(:,:,i) = bsxfun(@plus, lab * machine.labW, Wx); label_logpost(:,i) = machine.bias_labW(i) + sum(log(1 + exp(energy(:,:,i))), 2); end label_post = exp(bsxfun(@minus, label_logpost, max(label_logpost, [], 2))); label_post = bsxfun(@rdivide, label_post, sum(label_post, 2)); % Compute cost function -sum(log p(y|x)) Pyx = log(sum(label_matrix .* label_post, 2)); C = -sum(Pyx) + weight_cost * sum(machine.W(:) .^ 2); % Only compute gradients if they are requested if nargout > 1 % Precompute sigmoids of energies, and products with label posterior sigmoids = 1 ./ (1 + exp(-energy)); sigmoids_label_post = sigmoids; for i=1:no_labels sigmoids_label_post(:,:,i) = bsxfun(@times, sigmoids_label_post(:,:,i), label_post(:,i)); end % Initialize gradients grad_W = zeros(size(machine.W)); grad_labW = zeros(size(machine.labW)); grad_bias_upW = zeros(size(machine.bias_upW)); % Sum gradient with respect to the data-hidden weights for i=1:no_labels ind = find(labels == i); grad_W = grad_W + X(ind,:)' * sigmoids(ind,:,i) - X' * sigmoids_label_post(:,:,i); end grad_W = grad_W - 2 * weight_cost * machine.W; % Compute gradient with respect to bias on label-hidden weights for i=1:no_labels grad_labW(i,:) = sum(sigmoids(labels == i,:,i), 1) - sum(sigmoids_label_post(:,:,i), 1); end % Compute gradient with respect to bias on hidden units for i=1:no_labels grad_bias_upW = grad_bias_upW + sum(sigmoids(labels == i,:,i), 1) - sum(sigmoids_label_post(:,:,i), 1); end % Compute the gradient with respect to bias on labels grad_bias_labW = sum(label_matrix - label_post, 1); % Encode the gradient dC = -[grad_W(:); grad_labW(:); grad_bias_upW(:); grad_bias_labW(:)]; end end function [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5); % Minimize a continuous differentialble multivariate function. Starting point % is given by "X" (D by 1), and the function named in the string "f", must % return a function value and a vector of partial derivatives. The Polack- % Ribiere flavour of conjugate gradients is used to compute search directions, % and a line search using quadratic and cubic polynomial approximations and the % Wolfe-Powell stopping criteria is used together with the slope ratio method % for guessing initial step sizes. Additionally a bunch of checks are made to % make sure that exploration is taking place and that extrapolation will not % be unboundedly large. The "length" gives the length of the run: if it is % positive, it gives the maximum number of line searches, if negative its % absolute gives the maximum allowed number of function evaluations. You can % (optionally) give "length" a second component, which will indicate the % reduction in function value to be expected in the first line-search (defaults % to 1.0). The function returns when either its length is up, or if no further % progress can be made (ie, we are at a minimum, or so close that due to % numerical problems, we cannot get any closer). If the function terminates % within a few iterations, it could be an indication that the function value % and derivatives are not consistent (ie, there may be a bug in the % implementation of your "f" function). The function returns the found % solution "X", a vector of function values "fX" indicating the progress made % and "i" the number of iterations (line searches or function evaluations, % depending on the sign of "length") used. % % Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5) % % Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13 RHO = 0.01; % a bunch of constants for line searches SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket EXT = 3.0; % extrapolate maximum 3 times the current bracket MAX = 20; % max 20 function evaluations per line search RATIO = 100; % maximum allowed slope ratio argstr = [f, '(X']; % compose string used to call function for i = 1:(nargin - 3) argstr = [argstr, ',P', int2str(i)]; end argstr = [argstr, ')']; if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end if length>0, S=['Linesearch']; else S=['Function evaluation']; end i = 0; % zero the run length counter ls_failed = 0; % no previous line search has failed fX = []; [f1 df1] = eval(argstr); % get function value and gradient i = i + (length<0); % count epochs?! s = -df1; % search direction is steepest d1 = -s'*s; % this is the slope z1 = red/(1-d1); % initial step is red/(|s|+1) while i < abs(length) % while not finished i = i + (length>0); % count iterations?! X0 = X; f0 = f1; df0 = df1; % make a copy of current values X = X + z1*s; % begin line search [f2 df2] = eval(argstr); i = i + (length<0); % count epochs?! d2 = df2'*s; f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1 if length>0, M = MAX; else M = min(MAX, -length-i); end success = 0; limit = -1; % initialize quanteties while 1 while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0) limit = z1; % tighten the bracket if f2 > f1 z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit else A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit B = 3*(f3-f2)-z3*(d3+2*d2); z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok! end if isnan(z2) | isinf(z2) z2 = z3/2; % if we had a numerical problem then bisect end z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits z1 = z1 + z2; % update the step X = X + z2*s; [f2 df2] = eval(argstr); M = M - 1; i = i + (length<0); % count epochs?! d2 = df2'*s; z3 = z3-z2; % z3 is now relative to the location of z2 end if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1 break; % this is a failure elseif d2 > SIG*d1 success = 1; break; % success elseif M == 0 break; % failure end A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation B = 3*(f3-f2)-z3*(d3+2*d2); z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok! if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign? if limit < -0.5 % if we have no upper limit z2 = z1 * (EXT-1); % the extrapolate the maximum amount else z2 = (limit-z1)/2; % otherwise bisect end elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max? z2 = (limit-z1)/2; % bisect elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit z2 = z1*(EXT-1.0); % set to extrapolation limit elseif z2 < -z3*INT z2 = -z3*INT; elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit? z2 = (limit-z1)*(1.0-INT); end f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2 z1 = z1 + z2; X = X + z2*s; % update current estimates [f2 df2] = eval(argstr); M = M - 1; i = i + (length<0); % count epochs?! d2 = df2'*s; end % end of line search if success % if line search succeeded f1 = f2; fX = [fX' f1]'; s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction tmp = df1; df1 = df2; df2 = tmp; % swap derivatives d2 = df1'*s; if d2 > 0 % new slope must be negative s = -df1; % otherwise use steepest direction d2 = -s'*s; end z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO d1 = d2; ls_failed = 0; % this line search did not fail else X = X0; f1 = f0; df1 = df0; % restore point from before failed line search if ls_failed | i > abs(length) % line search failed twice in a row break; % or we ran out of time, so we give up end tmp = df1; df1 = df2; df2 = tmp; % swap derivatives s = -df1; % try steepest d1 = -s'*s; z1 = 1/(1-d1); ls_failed = 1; % this line search failed end end end function d = checkgrad(f, X, e, P1, P2, P3, P4, P5, P6); % checkgrad checks the derivatives in a function, by comparing them to finite % differences approximations. The partial derivatives and the approximation % are printed and the norm of the diffrence divided by the norm of the sum is % returned as an indication of accuracy. % % usage: checkgrad('f', X, e, P1, P2, ...) % % where X is the argument and e is the small perturbation used for the finite % differences. and the P1, P2, ... are optional additional parameters which % get passed to f. The function f should be of the type % % [fX, dfX] = f(X, P1, P2, ...) % % where fX is the function value and dfX is a vector of partial derivatives. % % Carl Edward Rasmussen, 2001-08-01. argstr = [f, '(X']; % assemble function call strings argstrd = [f, '(X+dx']; for i = 1:(nargin - 3) argstr = [argstr, ',P', int2str(i)]; argstrd = [argstrd, ',P', int2str(i)]; end argstr = [argstr, ')']; argstrd = [argstrd, ')']; [y dy] = eval(argstr); % get the partial derivatives dy dh = zeros(length(X),1) ; for j = 1:length(X) dx = zeros(length(X),1); dx(j) = dx(j) + e; % perturb a single dimension y2 = eval(argstrd); dx = -dx ; y1 = eval(argstrd); dh(j) = (y2 - y1)/(2*e); end disp([dy dh]) % print the two vectors d = norm(dh-dy)/norm(dh+dy); % return norm of diff divided by norm of sum end