%KLLDC Linear classifier built on the KL expansion of the common covariance matrix % % W = KLLDC(A,N) % W = KLLDC(A,ALF) % % INPUT % A Dataset % N Number of significant eigenvectors % ALF 0 < ALF <= 1, percentage of the total variance explained (default: 0.9) % % OUTPUT % W Linear classifier % % DESCRIPTION % Finds the linear discriminant function W for the dataset A. This is done % by computing the LDC on the data projected on the first eigenvectors of % the averaged covariance matrix of the classes. Either first N eigenvectors % are used or the number of eigenvectors is determined such that ALF, the % percentage of the total variance is explained. (Karhunen Loeve expansion) % % If N (ALF) is NaN it is optimised by REGOPTC. % % SEE ALSO (PRTools Guide) % MAPPINGS, DATASETS, PCLDC, KLM, FISHERM, REGOPTC % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: klldc.m,v 1.4 2007/06/13 21:59:42 duin Exp $ function W = klldc(a,n) if nargin < 2 n = []; prwarning(4,'number of significant eigenvectors not supplied, 0.9 variance explained'); end if nargin == 0 | isempty(a) W = prmapping('klldc',{n}); elseif isnan(n) % optimize regularisation parameter defs = {1}; parmin_max = [1,size(a,2)]; W = regoptc(a,mfilename,{n},defs,[1],parmin_max,testc([],'soft'),0); else islabtype(a,'crisp','soft'); isvaldfile(a,2,2); % at least 2 object per class, 2 classes a = testdatasize(a,'features'); a = setprior(a,getprior(a)); v = klm(a,n); W = v*ldc(a*v); W = setcost(W,a); end W = setname(W,'KL Bayes-Normal-1'); return