function wt = wavt(x,q1,q2,q3,q4) % Calculates the wavelet transform using quadratic spline wavelet. % It calculates scales 1 to 4. lx = length(x); wt = zeros(lx,4); % Implementazión con comboluzión en o dominio temporal % Millor filter que comv, ta que sólo bi aiga muestras buenas. % Feremos una mena d'overlap-save. % Implementation as a convolution in the temporal domain % filter rather than conv, so as to ther are only "good" samples %l1 = length(q1); l2 = length(q2); l3 = length(q3); l4=length(q4); wt(:,1) = filter(q1,1,x)'; %conv(x,q1)'; wt(:,2) = filter(q2,1,x)'; %conv(x,q2)'; wt(:,3) = filter(q3,1,x)'; %conv(x,q3)'; wt(:,4) = filter(q4,1,x)'; %conv(x,q4)'; %figure(1) %hold off %plot (wt(:,1)) %hold on %plot (wt(:,2)-10) %plot (wt(:,3)-20) %plot (wt(:,4)-30) %plot (x-40) % Implementazión en o dominio frecuenzial % Frequencial domain %fq1 = fft(q1, 2^(nextpow2(lx+l4-1))); %fq2 = fft(q2, 2^(nextpow2(lx+l4-1))); %fq3 = fft(q3, 2^(nextpow2(lx+l4-1))); %fq4 = fft(q4, 2^(nextpow2(lx+l4-1))); %fx = conj(fft(x, 2^(nextpow2(lx+l4-1))))'; %wt2(:,1) = real(ifft(fq1.*fx)); %wt2(:,2) = real(ifft(fq2.*fx)); %wt2(:,3) = real(ifft(fq3.*fx)); %wt2(:,4) = real(ifft(fq4.*fx)); %figure(2) %hold off %plot (wt2(2:end,1)) %hold on %plot (wt2(4:end,2)-10) %plot (wt2(8:end,3)-20) %plot (wt2(16:end,4)-30) %plot (x-40)